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Main results:



Context: The DICE model

Physical module
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DICE is a cost-benefit IAM. It is a simple climate-economy model. 

Causality: Production is split between Consumption (to create Welfare), Investment (to sustain future Production), and 

Abatement (to reduce Emissions and prevent future Damage that would reduce future Production).

Concept: The model solves for two control variables (mitigation rate, and savings rate) so that cumulative discounted Utility

is maximized, finding the optimum between cost of future Damage and cost of present Abatement.

(Nordhaus, 2017)

https://doi.org/10.1073/pnas.1609244114


Context: Social Cost of Carbon

Definition: Net  present  value  of  aggregate costs 

from one more tonne of carbon in the form of carbon 

dioxide (CO2), conditional on a global emissions 

trajectory over time.

This includes absolutely all costs (as represented in a 

model), and notably:

• Costs from climate damages

• Gains from not mitigating the one tonne now

• Costs from mitigating it later on (if e.g. a 

temperature target must be reached)

Significance: “The most important single economic 

concept in the economics of climate change is the 

social cost of carbon (SCC). At present, regulations 

with more than $1 trillion of benefits have been written 

for the United States that use the SCC in their 

economic analysis.” (Nordhaus, 2017)

Use: In a policy-making context, the SCC is used to monetize 

the hidden costs (negative externality) of emitting CO2. It is a 

marginal metric (somewhat similar to GWP, but for the 

economic system).

For instance, if installing wind farms costs 25 USD per t of 

CO2 avoided, and the SCC is estimated to be 40 USD tCO2-1, 

then the net cost of the wind farms is -15 USD tCO2-1, i.e. a 

net global economic gain.

Calculation: In DICE, it is technically calculated as the ratio of 

two Lagrange multipliers obtained after optimization. The 

numerator is the marginal impact on welfare of a unit of CO2

emitted at time t. The denominator is the marginal impact on 

welfare of a unit of total consumption at t. 

In other words, if along the optimal path an emission of one 

tonne of CO2 occurs at time t, and one removes x USD to the 

consumption path also at t, such that the welfare value (i.e. 

the cumulative discounted utility) remains the same as in the 

optimal path, then x is exactly the SCC at time t.

https://doi.org/10.1073/pnas.1609244114


Physical modelling : Climate module

DICE2016 CMIP5

50 8.2 ± 0.9 W yr m-2 K-1

1.19 1.18 ± 0.37 W m-2 K-1

0.09 0.87 ± 0.28 W m-2 K-1

18 134 ± 46 W yr m-2 K-1
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Original DICE formulation:

More correct (continuous) formulation: Typical formulation in climate science:

(Geoffroy et al., 2013)
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The two systems are equivalent, 

though the (very wrong) parameters 

need an update:

https://doi.org/10.1175/JCLI-D-12-00196.1


Physical modelling: Ocean carbon module

Original DICE formulation (ocean + land):

𝑀𝐴𝑇 𝑡 = 𝐸 𝑡 + 𝜙11𝑀𝐴𝑇 𝑡 − 1 + 𝜙21𝑀𝑈𝑃 𝑡 − 1

𝑀𝑈𝑃 𝑡 = 𝜙11𝑀𝐴𝑇 𝑡 − 1 + 𝜙22𝑀𝑈𝑃 𝑡 − 1 + 𝜙32𝑀𝐿𝑂 𝑡 − 1

𝑀𝐿𝑂 𝑡 = 𝜙23𝑀𝑈𝑃 𝑡 − 1 + 𝜙33𝑀𝐿𝑂 𝑡 − 1
MAT
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This is a linear system, which is inadequate to describe 

saturating effects and climate feedbacks.

Solution: explicitly represent key non-linear 

processes (and thus separate ocean and land)

Step 1: Ocean C

Co
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Key processes:

• Non-linear carbonate chemistry emulated
with pCO2, incl. climate feedback

• Complex (linear) dynamic obtained with 6 
timescales (τi)

(Joos et al., 1996)

https://doi.org/10.1034/j.1600-0889.1996.t01-2-00006.x


Physical modelling: Land carbon module
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Key processes:

• CO2-fertilization of 
photosynthesis, incl. 
climate feedback

• Wildfire emissions

• Climate-dependent
respiration, with
"priming" effect

• Passive (= very slow) 
soil carbon pool

• Permafrost thaw ()

But land-use ignored!

Step 2: Land C

(Gasser et al., 2017)

Step 3: Permafrost C

(Gasser et al., 2018)
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https://doi.org/10.5194/gmd-10-271-2017
https://doi.org/10.1038/s41561-018-0227-0


Bayesian calibration : Overview

Principle: assimilate information from prior knowledge on 

parameters and observations, to derive posterior 

knowledge on both ().

Prior distributions of 35 parameters (out of 63):

• 27 estimated with OLS regression on TRENDY or 

CMIP5 models, then taking multi-model average and 

standard deviation (16 models for climate, 11 for land 

preindustrial carbon, 7 for carbon transient responses)

• 8 taken from the literature

• assumed prior distribution depending on support:       

N if (-∞, +∞), Log-N if [0, +∞), Logit-N if [0, 1]

Prior drivers of the model (GSAT & CO2):

• assumed auto-correlated timeseries (auto-correlation 

also estimated during calibration)

Prior distributions of 14 observations (= constraints):

• taken from the literature to cover all components 

(climate, land C, ocean C)

Bayesian inference:

• run with a full-rank ADVI (Automatic Differentiation 

Variational Inference) algorithm

• implemented in python with PyMC3 package

Posterior estimates 

(posterior parameters)

Prior estimates 

(prior parameters)

Observations



Bayesian calibration : Results (observations)

GSAT & CO2 timeseries (inputs to the model): Land C: sink matches Global Carbon Budget, but TRENDY 

and IPCC estimates of preind. veg. carbon incompatible:

Ocean C: structure cannot match Global Carbon Budget, 

which is compensated by lower compatible CO2 emissions:

Climate: non-CO2 ERF notably lower than IPCC:



Bayesian calibration : Results (parameters)

Though many parameters only slightly affected by the 

calibration. Some significantly are, however.

Climate: extreme ECSs (T2x) and slow timescales (THd) excluded:

Land C: CO2-fertilization (bnpp) increased to match GCB sink, preind. NPP 

(npp0) adjusted, veg. turnover (vmort) reduced to increase preind. pool:

Ocean C: mixing layer depth multiplier (bdic) increased:

Additionally, the full-rank ADVI algorithm 

finds correlations () among parameters:

• anti-correlation of CO2 radiative efficiency (phi) 

and ECS (T2x)

• correlation of ECS and deep ocean heat uptake 

efficacy (eheat)

• anti-correlation of preind. NPP (npp0) and 

fertilization factor (bnnp)

• correlation between soil C turnover times (vmet, 

vrh1, vcs2)



Bayesian calibration: Comparison to ESMs

Concentration-driven runs to diagnose the 

climate response (left panels) and the carbon 

cycle (right panels).

Original module (gray lines):

• particularly wrong for low- or medium-

warming scenarios.

• Same short and long climate timescales.

• Carbon-cycle slowed down to compensate 

lack of saturation and climate feedback.

New module (brown, named PathFinder):

• Slightly more optimistic climate

• More optimistic carbon-cycle.

Calibration on CMIP6 and analysis in the works.



Typical uncertainty analysis: Monte Carlo.

Robust optimization: Caveat of Monte Carlo

 Prior vs. posterior  Unconstrained vs. constrained

For an IAM, running a Monte Carlo ensemble merely requires 

solving several deterministic problems in parallel (here, 4000 

different states of the world, with equiprobability). 

Each solution is optimal for its own world, but assumes no 

uncertainty within that world, and ignores other worlds.

For the policy-maker, however, this represents 4000 solutions. 

Which one should be chosen? One could take the median (or 

average) solution, but is the median of optimal policies an 

optimal policy for the median world?

Does that properly account for physical uncertainty? (see e.g. 

the constrained case that peaks at 2°C with 100% certainty.)



Robust optimization: Robust SCC

Solution: finding a unique policy applied across all states of the worlds, by optimizing the cross-world average welfare

Preliminary results for robust optimization:

• generates a unique value of SCC, as the 

physical uncertainty moves back to the 

physical variables

• treats uncertainty consistently as a risk 

if one follows the unique policy

• appears to be very close to the average 

optimal policy when unconstrained

• differs from it when applying a 

constraint/target (which must be 

expressed in probabilistic terms)



• The original physical module of DICE is just wrong. It should never be used.

• Data and structural options for a simple (and yet accurate) physical module are 

available (but such module is not unique).

• Bayesian calibration is powerful magic.

• With a revamped and recalibrated physical module, in a Monte Carlo setup informed by 

observations, the SCC is lower than the original value.

• However, a Monte Carlo setup is inadequate to properly integrate uncertainty into 

decision-making. Robust policies can be designed by optimizing across future states of 

the world. Doing so leads to an increase in SCC for the 2°C target.

Take-home messages


