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A Bayesian-inferred physical module to estimate robust
mitigation pathways with cost-benefit IAMs

Main results:
DICE2016 DICE2016 Continuous New clima.te TSl carb.on i Permafrqst Prior median Po;terior Robust
module (prior | module (prior | module (prior median [90% L
GAMS python formulation [90% range] optimization
mean) mean) mean) range]
Peak AT (°C) 3.4 3.2 3.2 3.2[2.6-4.0] 3.0[2.4-3.5] 2.9[2.0-4.0]
SCC in 2020 35 [18-68] 26 [13-43]
(USD /tC0O2) 2 2 2 0 = €l mean=38 mean=27 21
SCC under : : 67 [18-287] 97 (@50%)
2°C constraint impossible 140 166

mean = 95 134 (@66%)
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» The DICE model » Climate module » QOverview » Caveat of Monte Carlo

» Social Cost of Carbon » Ocean carbon module > Results (observations) > Robust SCC
> Land carbon module > Results (parameters)

» Comparison to ESMs 5. Conclusion
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Context: The DICE model

DICE is a cost-benefit IAM. It is a simple climate-economy model.
Causality: Production is split between Consumption (to create Welfare), Investment (to sustain future Production), and
Abatement (to reduce Emissions and prevent future Damage that would reduce future Production).

Concept: The model solves for two control variables (mitigation rate, and savings rate) so that cumulative discounted Utility
is maximized, finding the optimum between cost of future Damage and cost of present Abatement.
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< | | > (Nordhaus, 2017)



https://doi.org/10.1073/pnas.1609244114

Context: Social Cost of Carbon

Definition: Net present value of aggregate costs
from one more tonne of carbon in the form of carbon
dioxide (CO,), conditional on a global emissions
trajectory over time.

This includes absolutely all costs (as represented in a
model), and notably:

« Costs from climate damages
« Gains from not mitigating the one tonne now

« Costs from mitigating it later on (if e.g. a
temperature target must be reached)

Significance: “The most important single economic
concept in the economics of climate change is the
social cost of carbon (SCC). At present, regulations
with more than $1 trillion of benefits have been written
for the United States that use the SCC in their
economic analysis.” (Nordhaus, 2017)
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Use: In a policy-making context, the SCC is used to monetize
the hidden costs (negative externality) of emitting CO.,. Itis a
marginal metric (somewhat similar to GWP, but for the
economic system).

For instance, if installing wind farms costs 25 USD per t of
CO, avoided, and the SCC is estimated to be 40 USD tCO2-,
then the net cost of the wind farms is -15 USD tCO2%, i.e. a
net global economic gain.

Calculation: In DICE, it is technically calculated as the ratio of
two Lagrange multipliers obtained after optimization. The
numerator is the marginal impact on welfare of a unit of CO,
emitted at time t. The denominator is the marginal impact on
welfare of a unit of total consumption at t.

In other words, if along the optimal path an emission of one
tonne of CO, occurs at time t, and one removes x USD to the
consumption path also at t, such that the welfare value (i.e.
the cumulative discounted utility) remains the same as in the
optimal path, then x is exactly the SCC at time t.


https://doi.org/10.1073/pnas.1609244114

Physical modelling : Climate module

Original DICE formulation:
Tar(t) = Tyr(t — 1) + & (F(t) —&Tur(t—1) — 53(TAT(t —1) =Tt — 1)))
Tro(®) = Tpo(t — 1) + & (Tar(t — 1) — Tyt — 1))

More correct (continuous) formulation: Typical formulation in climate science:
F|1 Fllxr
5T dT
6,:T _ '5;1 (F( ) = &,Tur(t) — fg(TAT(t) ~ Ty (t))) I e = F(t) — AT(t) + GY(Td(t) - T(t))
Tyr r
ST dr,
T 6?0 (TAT(t) — T1o(t)) Is 1 d_tfi =y(T(@®) —T4(®))
| 1)
Ty 1,
l_‘al
The two systems are equivalent, _—
though the (very wrong) parameters I, = 6t/&, 8.2+0.9 W yr m2 K1
need an update: A=& 1.19 1.18 +0.37 W m-2 K-1
ey = &, 0.09 0.87 +0.28 W m-2 K-1
ely = 6té3/¢, 18 134 + 46 W yr m2 K1

‘ <:| |:> (Geoffroy et al., 2013)


https://doi.org/10.1175/JCLI-D-12-00196.1

Physical modelling: Ocean carbon module

Original DICE formulation (ocean + land):

E

l Mur(t) = E(t) + P11 Mur(t — 1) + o1 Myp(t — 1)
M, Myp(t) = ¢p11Mar(t — 1) + 22 Myp(t — 1) + P32 Mo (t — 1)
T l Mpo(t) = ¢osMyp(t — 1) + ¢P33Mo(t — 1)
Myp

MLO

This is a linear system, which is inadequate to describe
saturating effects and climate feedbacks.

Solution: explicitly represent key non-linear
processes (and thus separate ocean and land)
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Step 1: Ocean C

0y

(Joos et al., 1996)

Key processes:

* Non-linear carbonate chemistry emulated
with p.o,, incl. climate feedback

« Complex (linear) dynamic obtained with 6
timescales (t,)


https://doi.org/10.1034/j.1600-0889.1996.t01-2-00006.x

Physical modelling: Land carbon module

Step 2: Land C

lNPP(Ca, T)
. | IEGD
Rh(C, T)

—| O |[«—| O

hgq

(Gasser et al., 2017)
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Key processes:

« CO,-fertilization of
photosynthesis, incl.
climate feedback

« Wildfire emissions

« Climate-dependent
respiration, with
"priming" effect

» Passive (= very slow)
soil carbon pool

* Permafrost thaw (=)

But land-use ignored!

Step 3: Permafrost C

E,
A
[ .
Ctlz] Cch Cth.?

athaw
A
1
V oz \:/ ! Vthaw

T____> at]zaw

(Gasser et al., 2018)



https://doi.org/10.5194/gmd-10-271-2017
https://doi.org/10.1038/s41561-018-0227-0

Bayesian calibration : Overview

Observations

Principle: assimilate information from prior knowledge on
parameters and observations, to derive posterior
knowledge on both (=»).

Prior distributions of 35 parameters (out of 63):

« 27 estimated with OLS regression on TRENDY or
CMIP5 models, then taking multi-model average and

standard deviation (16 models for climate, 11 for land Prior distributions of 14 observations (= constraints):
preindustrial carbon, 7 for carbon transient responses) - taken from the literature to cover all components
- 8 taken from the literature (climate, land C, ocean C)
« assumed prior distribution depending on support:
N if (-0, +00), Log-N if [0, +00), Logit-N if [0, 1] Bayesian inference:
« run with a full-rank ADVI (Automatic Differentiation
Prior drivers of the model (GSAT & CO,): Variational Inference) algorithm
« assumed auto-correlated timeseries (auto-correlation - implemented in python with PyMC3 package

also estimated during calibration)
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Bayesian calibration : Results (observations)

GSAT & CO, timeseries (inputs to the model): Land C: sink matches Global Carbon Budget, but TRENDY
d T(K —1) - . . . .
(mean: voon-2019] (meam: 1909-2018] and IPCC estimates of preind. veg. carbon incompatible:
Fland (PgC) NPP (PgC yr=1)
[sum: 1959-2018] [mean: 1998-2002]
~
/
/,
0.8 1.0 0.01 0.02 0.03 /l
CO2 (ppm) d_CO2 (ppm yr1) N L |\|
[mean: 2010-2019] [mean: 2009-2018] 0 200 400 50 75
Cv (PgC) Cs (PgC)
= obs. [mean: 1750-1750] [mean: 1750-1750]
[ prior
0 ADVI1 ’\
\
\
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Climate: non-CO, ERF notably lower than IPCC:
d_OHC (W m~2) ERFx (W m~2) Ocean C: structure cannot match Global Carbon Budget,
[mean: 2005-2017] [mean: 2006-2016] . . . . .
which is compensated by lower compatible CO, emissions:
Focean (PgC) Eco2 (PgCyr1)
[sum: 1959-2018] [mean: 2009-2018]

50 100 150 10 15




Bayesian calibration : Results (parameters)

Though many parameters only slightly affected by the Additionally, the full-rank ADVI algorithm
calibration. Some significantly are, however. finds correlations (V) among parameters:
Climate: extreme ECSs (T2x) and slow timescales (THd) excluded: - anti-correlation of CO, radiative efficiency (phi)
T2x (K) THd (Wyrm—2 K1) and ECS (T2x)
O prior
[ ADVI1 « correlation of ECS and deep ocean heat uptake
efficacy (eheat)
2.5 5.0 7.5 100 200 300 « anti-correlation of preind. NPP (npp0) and
Land C: CO,-fertilization (bnpp) increased to match GCB sink, preind. NPP fertilization factor (bnnp)
(npp0) adjusted, veg. turnover (vmort) reduced to increase preind. pool: « correlation between soil C turnover times (vmet,
bnpp (1) nppo (PgC yr?) vmort (yr—1) vrh1, vcs2)
ﬂ Jﬁﬁ%‘ g Brmana syked etey %.5 SyssatEs ADVIL
i V]
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Bayesian calibration: Comparison to ESMs

global temperature change (in K) cumulative carbon sinks (in PgC)

2 Jo 20 1500 1o o0 Concentration-driven runs to diagnose the
] ] climate response (left panels) and the carbon
cycle (right panels).

1000 +

500 ~

o1l = Dctois e airsmodes]| o] Original module (gray lines):
0 50 10(;ears 200 400 600 0 20 40 GﬂyearSBD 100 120 140 ° partICUIarly Wrong for IOW_ or medlum_

warming scenarios.

« Same short and long climate timescales.

« Carbon-cycle slowed down to compensate
lack of saturation and climate feedback.

New module (brown, named PathFinder):

« Slightly more optimistic climate

« More optimistic carbon-cycle.

rrrrr[rrr T[T T T T T T rrrrr[rrrrr [ 1T T
2000 2050 2100 2150 2200 2250 2300 2000 2050 2100 2150 2200 2250 2300

years years Calibration on CMIP6 and analysis in the works.
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Robust optimization: Caveat of Monte Carlo

Typical uncertainty analysis: Monte Carlo.

» Prior vs. posterior

AT (K) SCC (USD / tC0O2)
4.0 1 1 =— prior

{ == posterior

3.5 -
107 1
3.0 - ]
2.5
2.0 A 102 1

1.5

104 "

T T T T T T loll T T T T T
2000 2100 2200 2300 2400 2500 2000 2100 2200 2300 2400 2500

For an IAM, running a Monte Carlo ensemble merely requires
solving several deterministic problems in parallel (here, 4000
different states of the world, with equiprobability).

Each solution is optimal for its own world, but assumes no
uncertainty within that world, and ignores other worlds.
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» Unconstrained vs. constrained

AT (K) SCC (USD / tCO2)
3.5 4 = unconstrained
i 2°C constraint
3.0 10° 4
2.5 4
107
2.0+ ]
1.5
102 5
1.0
0.5 1 T T T T T T 101 R T T T T T
2000 2100 2200 2300 2400 2500 2000 2100 2200 2300 2400 2500

For the policy-maker, however, this represents 4000 solutions.
Which one should be chosen? One could take the median (or
average) solution, but is the median of optimal policies an
optimal policy for the median world?

Does that properly account for physical uncertainty? (see e.qg.
the constrained case that peaks at 2°C with 100% certainty.)



Robust optimization: Robust SCC

Solution: finding a unique policy applied across all states of the worlds, by optimizing the cross-world average welfare

AT (K) SCC (USD / tCO2)
- . 4.0 ]
Preliminary results for robust optimization:
3.5 1
) 107 5
« generates a unique value of SCC, as the . :
physical uncertainty moves back to the
. . 2.5 1
physical variables
2.0 1 102 5
 treats uncertainty consistently as a risk s ]
; ; . ) e MC (Unconstrained)
if one follows the unique policy o  robust (unconstrained)
. appears tO be Very CIOSG tO the average EDIDD EIIDD EEIDD 23IDD 24IDD ESIDD EDIDD EIIDD EEIDD 23IDD 24IDD 25IDD
optimal policy when unconstrained - ; E—
1 = robust (50% under 2°C)
 differs from it when applying a 104 4 robust (66% under 2°C)
. . 2.0 ~ 1
constraint/target (which must be :
expressed in probabilistic terms) . 10 - |
.t . /

T T T T T T T T T T T T
‘ <:| |:> 2000 2100 2200 2300 2400 2500 2000 2100 2200 2300 2400 2500
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Take-home messages

« The original physical module of DICE is just wrong. It should never be used.

« Data and structural options for a simple (and yet accurate) physical module are
available (but such module is not unique).

« Bayesian calibration is powerful magic.

« With a revamped and recalibrated physical module, in a Monte Carlo setup informed by
observations, the SCC is lower than the original value.

« However, a Monte Carlo setup is inadequate to properly integrate uncertainty into
decision-making. Robust policies can be designed by optimizing across future states of
the world. Doing so leads to an increase in SCC for the 2°C target.

_

_44




