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Abstract

The Social Cost of Carbon is probably the most important metric when it comes to
climate change mitigation. This term represents the economic cost caused by an additional
ton of carbon dioxide emissions or its equivalent. Since its creation, the Social Cost of
Carbon has become a central tool used in climate change policy-design, particularly in
the case of regulatory policies that involve greenhouse gas emissions. However, the Social
Cost of Carbon suffers from an absence of known uncertainties. Which means that it is
not possible to ascertain a confidence interval for a given estimate of the Social Cost of
Carbon whereas, on the contrary, there is great uncertainty on future global warming.
In this study, we aim at estimating the uncertainty of the Social Cost of Carbon with
the DICE model, probably the most often used Integrated Assessment Model to compute
the Social Cost of Carbon. To this end, we develop a new compact climate model that
is designed according to state-of-the-art knowledge in climate physics. Coupled with a
Bayesian calibration, we perform an uncertainty analysis with a Monte Carlo setup. With
this upgraded DICE framework, we estimate the Social Cost of Carbon and its uncertainty,
on a various range of potential future scenarios, the Shared Socioeconomic Pathway. This
finally allows us to conclude on the main factors determining the Social Cost of Carbon
as well as on some of the questions raised by this study.
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Introduction
Global climate change is a major challenge faced by mankind on its way to sustainable

development. As the Global Mean Surface Temperature rises, it becomes clearer and clearer
that global warming implies significant negative impacts on societies. Since Earth’s system is
a global common good, climate change can be managed effectively only through collective and
coordinated policies for adaptation and mitigation.

To this end, international agreements, such as the 2016 Paris agreement, have been taken
since 1997 and the Kyoto protocol. With the progresses made by complex climate models that
help us understanding the physical mechanism behind climate change, there is an increasing
need of guidance for action. Thus, more research is needed to create feasible mitigation policies
consistent with the specified targets. These policies would aim to minimize the negative impacts
of climate change on human and environmental well-being, while ensuring that other aspects
of well-being, most notably economic prosperity, are not unduly compromised. “In practice,
an economic analysis of climate change weighs the costs of slowing climate change against the
damages of more rapid climate change” [Nordhaus, 2013]. Hence, a comprehensive analysis of
the complex climate–economy system, in which these trade-offs are more realistically addressed,
is still needed.

The economic mitigation challenge is measured by the Social Cost of Carbon (SCC), the
economic cost caused by an additional ton of carbon dioxide emissions or its equivalent on a
given greenhouse gases emission path. Since its creation in the 90’s, despite some setbacks,
decisions considering the SCC in the economic analysis account for benefits of one trillion of
dollars. The SCC is, thus, the most significant economic concept in the economics of climate
change. However, the IAMs computing the SCC only provide us one single pathway, the optimal
trajectory. On the contrary, there exists huge uncertainty due to lack of data and incomplete
knowledge of the systems we describe (physical as well as economic). Without confidence
intervals there is no reliable estimation of any metric. Indeed, since a function’s value at one
point says little about the whole function, an optimal trajectory says little about the behavior
of the entire climate–economy–policy system being considered. Thus, assessing the uncertainty
of the SCC is essential for an efficient policy-design methodology.

The purpose of this study is to rigorously assess the uncertainty of the SCC with the
framework provided by the DICE model1. In a first part, we describe the field of Integrated
Assessment Model and therefore present the research strategy we follow in the subsequent part.
Consequently, each part represents an additional step towards achieving our objective.

1For a complete description of the DICE model, see Annex A on page 46.
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1 An introduction to Integrated Assessment Models and
the Social Cost of Carbon

The comprehension and modelling of the consequences of global warming on human societies
is a daunting challenge. Understanding, but also evaluating and proposing solutions are objec-
tives that the scientific community must achieve. To this end, so-called integrated models have
been developed to provide an economic as well as a physical framework for studying climate
change. Evaluating and optimizing policies, these models have also developed their own metrics
to assess the mitigation of climate. The Social Cost of Carbon is one of them. Present since
the 1990s, it plays an essential role in political decision-making on the mitigation of global
warming and the limitation of its impacts. However, these models are now, justifiably, under
the spotlight of much criticism.

1.1 Different kind of Integrated Assessment Models

Following the definition of [IPCC, 2018], Integrated assessment is a "method of analysis that
combines results and models from the physical, biological, economic and social sciences and
the interactions among these components in a consistent framework to evaluate the status and
the consequences of environmental change and the policy responses to it". Most IAMs can be
divided in two categories : Policy Optimization Models (POMs)2 and Policy Evaluation Models
(PEMs). On the one hand, POMs aim at carrying out a cost-benefit analysis3 of climate change
mitigation that compares the abatement costs with the potential impacts due to climate change
and thus determine an optimal policy-trajectory. On the other hand, PEMs focus on the cost-
effectiveness of a particular policy to achieve a certain mitigation target. The IAMs have two
core blocks. The first is an economic module that is represented by an agent who allocates its
resources through an inter-temporal optimization problem. The agent chooses how much to
consume, to invest, and where to invest (clean or dirty energy?). PEMs model have detailed
sectoral information that allow them to compute partial or general equilibrium, whereas POMs
aggregate the economic activity to a global (or regional level). From the economic component
arises the greenhouse gas emissions. These emissions are handled by the second core feature, the
physical module, which translates them into an increase in Global Mean Surface Temperature.
What differentiate POMs from PEMs, is a third component : a damage function that links
the increasing of temperature with economic damages. This aggregate function simulates the
loss of worker productivity, the damages on capital, the decrease of agricultural yields as well
as the risk from extreme events. This damage function and the underlying policy-optimization
process is very costy in term of computationnal power, which is why POMs have simpler
economic module and are more aggregate. They exchange the representation complexity for
computation complexity and, thus it allows them to derive the well-known Social Cost of
Carbon.

1.2 The Social Cost of Carbon

The SCC is the marginal global cost to society that results from the emission of an extra tonne
of carbon at time t along a determined emission trajectory (i.e. it is the shadow price of carbon).

2Famous POMs are for example PAGE, FUND or WITCH. The DICE model is a POMs
3Climate mitigation policies, on this approach, ought to be pursued to the extent that their marginal future

benefits are at least equal to or exceed their present (and future) marginal costs.
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The SCC is a key indicator when it comes to global warming mitigation. Used by governments to
design their mitigation policy and their regulation strategy [United States Government, 2016],
the SCC can also be used to re-assess investment with a consideration of all the resulting CO2

emissions. As Nordhaus underlines : "The most important single economic concept in the
economics of climate change is the Social Cost of Carbon (SCC). At present, regulations with
more than $1 trillion of benefits have been written for the United States that use the SCC in
their economic analysis." [Nordhaus, 2017]. In fact Despite the significance of such a metric,
only a few models are well established as estimators of the SCC. These models are FUND4,
PAGE5 and DICE. To sum it up, POMs can estimate "policy optimal" trajectory, and therefore
produce a widespread indicator, the SCC.

1.3 Criticisms raised against Integrated Assessment Models

However, IAMs are widely criticised by prominent economists [Pinduyk, 2015]6 or philoso-
phers [Frisch, 2013] for many good reasons.

First of all, IAMs are highly sensitive to very uncertain parameters, both in the physi-
cal and economic components of the model. The criticisms relative to uncertainty focus on
two key parameters, the Equilibrium Climate Sensivity and the intertemporal discount rate.
[Pinduyk, 2015] states that we know very little of the Equilibrium Climate Sensivity whereas
it is in fact an essential parameter of the physical response of IAMs7. The problem with this
parameter is that some physical mechanisms that drives the strength of the warming phe-
nomenon remain unknown. Thus, it implies a huge modelling uncertainty on this parameter
when estimating it with complex model. Moreover, there is simply a wide uncertainty about
the entire climate system. Indeed, there is still very little data to quantify some feedbacks
and non-linear phenomena that are not, therfore, taken into account in the POMs. On the
economic module side, beyond questions on the level of precision, there is a heated debate on
the economic foundations of the used models [Weitzman, 2013]. What hypotheses can be made
in terms of behaviour? Should we choose a discounting rate and an elasticity of consumption
that correspond to current behaviours or should we have a normative approach? On what
philosophical basis can such an approach be built? How then should well-being be defined and
quantified [Frisch, 2013]? In the absence of anything better, the used framework is therefore
that of neo-classical models by simulating different discount rates, which has a considerable
influence on indicators such as the SCC.

What’s more there are several issues concerning aggregation. The representative house-
hold and firms hypothesis cannot be verified. The climate change damages and risks as well
as the level of development are spatially unequally distributed. PEMs can take into account
cross-country economic variability but do not have a damage function, while POMs have highly
aggregated economic models with damage function. Very few studies currently propose frame-
works that deal with the issue of cross-country damages variability [Burke et al., 2015].

4FUND model website
5PAGE model website
6"In a recent article, I argued that Integrated Assessment Models (IAMs) “have crucial flaws that make them

close to useless as tools for policy analysis.” In fact, I would argue that calling these models “close to useless” is
generous: IAM-based analyses of climate policy create a perception of knowledge and precision that is illusory,
and can fool policy-makers into thinking that the forecasts the models generate have some kind of scientific
legitimacy."

7This one of the reason why we propose a new climate module for the DICE model in part 2.
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In addition, [Farmer et al., 2015] and [Ackerman et al., 2009] raise the issue of technolog-
ical change. Most POMs assume exogenous technology progress through the Total Factor of
Productivity, the energy efficiency, or the cost of different technologies. However, technological
forecasting is highly uncertain and path dependant. To go further, it should be realized that
this is the case for all scenario drivers, such as population or greenhouse gas emissions. Along
POMs there is a lack of consistent global scenarios that can take into account potential futures.

Finally, the damage function is at the heart of the debate that is stirring researchers, since
it is a a feature of primary importance that relies on very little reliable empirical data8. How
is it possible to imagine or measure the damages of a sustained 3◦C GMST anomaly? As
most survey use weather data to estimate the impact of temperature on the economy, they are
limited to short time periods and small fluctuations in temperature. Is it possible to consider
this kind of data as relevant and reliable? Still, this damage function is the element that allow
the research of an optimal trajectory (hence, the Social Cost of Carbon), so despite its flaws it
is a necessary and useful feature.

1.4 Strategy for this research study

Despite numerous flaws, Policy Optimization Models are widely used to provide guidance for
policy design. It is therefore interesting to correct these flaws with better methods and frame-
work. In this study, we focus on the DICE model and try to improve it in order to respond
to the defects mentioned in the previous paragraphs9. Indeed the most robust estimates pos-
sible are necessary when using IAMs as policy-design tool First, we deal with the uncertainty
surrounding the future climate with an improved climate model (see part 2) that we calibrate
considering observations of past climate as constraints. Then, we run this more efficient model
on various consistent scenarios that are widely used in the scientific world. Therefore, it is pos-
sible to assess a more robust estimate of the Social Cost of Carbon and compute its uncertainty
arising from the existing uncertainty on the depiction of the Earth system.

8Pinduyk considers the damage function as "the most speculative element of the analysis”
[Farmer et al., 2015]

9For a complete description of the DICE model, see Annex A on page 46.
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2 The Earth Risk Management (ERM) climate model
In this section, we perform the first step of our effort to improve the DICE model. We present

the reasons why a new climate module is necessary for the DICE model, as well as a renovated
physical module that represents the state-of-the-art climate science knowledge. Finally, we
compare the estimates obtained with this new climate module with the one provided by the
classic DICE model.

2.1 Why a new climate module?

As explained in part 1, many criticisms are raised against IAMs, in particular against the
DICE model. Thus, we propose to tackle the issue of the representation of the Earth system
in the DICE model. However, why should the DICE climate model be considered to be a bad
one? Indeed, it is quite simple, but simplicity is no flaw in itself. So, let us understand why
the climate module really needs to be changed, although Nordhaus pretends that is model has
been calibrated on the latest IPCC’s report estimates in [Nordhaus, 2017].

Figure 1: Climate response to a quadrupling of the CO2 concentration at the Preindustrial
equilibrium and Impulse Response Function of the carbon cycle in the current conditions (for
more information about IRFs, see Annex B on page 50 or [Enting, 2007]), the horizontal scale
is in year

The figure 1 on page 8 shows us the assessment of the two main features of the DICE climate
model : the climate response to a variation of the CO2 concentration and the response of the
carbon cycle to CO2 emissions (to get information on the design of the model, see Annex A.3
on page 48).
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The first graph on the figure allows us to compare the climate responses of the consecutive
DICE models presented in [Nordhaus, 2013] with the two-box model developed in [Geoffroy et al., 2013b]
and [Geoffroy et al., 2013a] that is calibrated on the CMIP5 outputs (i.e. the best guesses of
the current knowledge in the climate science field). It shows us two things. On the one hand,
that the DICE model climate dynamics is too slow : looking at the beginning of the curve, it
is possible to see that the short-term characteristic time is much longer than the one of the
CMIP5 outputs. The dynamics of the DICE model climate module is not reliable. On the other
hand, that the convergence temperature (known as the Equilibrium Climate Sensivity (ECS))
is completely different : the DICE model climate response warms less in the very long term.
To sum it up, the climate response of the DICE model physical module is slower and weaker
than the one provided by state-of-the-art GCMs.

The second graph presents us the IRF of the atmosphere to the emission of CO2. It can
be understood as follows : if one unit of CO2 is emitted in the atmosphere at time 0, what
percentage of this unit does remain in the atmosphere at time t (considering a constant GMST).
The comparison here is made with a model developed in [Joos et al., 1996], still recognised as
a precise and rigorous model, despite its not being recent. What it shows is that DICE carbon
cycle retains more carbon in the atmosphere and has a characteristic time that is clearly longer
than it should. In a nutshell, the DICE model carbon cycle stores more carbon and is slower
than the actual Earth carbon cycle.

It is interesting to notice that both flaws in the carbon cycle and in the climate response
balance themselves, so that considering emissions as the input and temperature as the output,
the DICE physical module seems to be accurate and reliable whereas the internal dynamic is
faulty. This is a serious problem, because it prevents the estimates of the model from being
properly compared with any more complex climate model. These flaws are the reason why,
developing a new climate model for the DICE model is especially interesting. More over, a new
climate should also allow us to compute estimates that are used in the climate science field
such as the different carbon sink fluxes or the ocean heat content and might help to bridge
the gap mentioned in [Calel and Stainforth, 2017] between economists and climate scientists.
Finally, with Bayesian calibration coupled with a large Monte Carlo sampling we estimate
various uncertainties over the output of the DICE model as reported in Part 3 on page 31. So,
now that we are convinced that a new climate is necessary and useful, let us present the model
itself, the Earth Risk Management (ERM) climate model.

2.2 Representation of the ERM climate model

The ERM climate model is a very compact and simplified climate that emulates at first the
carbon cycle and then the climate response. It is represented on figure 2 on page 10. On this
figure, each block stands for a part of the system that is parametrized by a relevant set of
variables. Arrows between blocks represent the relations between these variables that often
take the form of differential equations (see Part 2.3 page 10).

Firstly, grey blocks figure the inputs of the model that are known as drivers. In the
DICE model, the emissions from fossil-fuels are an output of the economical model (see Annex
A.2 page 46). On the contrary, emissions from land-use change and the non-CO2 Radiative
Forcing are completely exogenous. Moreover, the green blocks represent the carbon
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Figure 2: The ERM climate model in a nutshell

cycle. It consists of four blocks that stand for the atmosphere, the land carbon uptake, the
ocean carbon uptake and the emissions from thawing permafrost. The climate response
is represented by the three red-colored blocks. What is noteworthy is that there is a
feedback of the climate response (through the GMST anomaly) on the climate cycle. Finally,
the blue blocks with the dotted arrows are impacts that can be derived from the variables
of the model.

2.3 Description of the ERM climate model

As said previously, the ERM climate model is a box-model. Using box-model is a very simple
and efficient idea, that corresponds to the use of an approximation of the Laplace transformation
of the system response function ([Enting, 2007] and Annex B page 50). Thus, our model does
not completely show and use the physical mechanisms behind the phenomenon it describes
(for instance, the ocean is not spatially divided in seven parts even if the Ocean sink model
is comprised of seven boxes), but sometimes uses as division units (For instance, the division
of the Land sink model relies on the structure of the biosphere and the distinction between
surface and deep ocean is based on the actual structure of the ocean). We will now present
the different parts of the model in the following order, first the carbon cycle, then the climate
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response and finally the impacts that derive from the model.

2.3.1 Carbon Cycle

The carbon cycle is a very complex system, with still a lot to do to improve our understanding
of its functioning. The Figure 3 on page 11 is a simplified schematic of the global carbon cycle
that comes from [IPCC, 2013]. Numbers represent reservoir mass, also called ‘carbon stocks’
in PgC (1 PgC = 1015 gC) and annual carbon exchange fluxes (in PgC.yr−1).

Figure 3: Schematic representation of the global carbon cycle [IPCC, 2013]

In the following paragraphs, we propose an obviously quite simple - but very efficient for
our purpose - model of the carbon cycle. As it is possible to see on Figure 2 page 10, our
carbon cycle model consists of four key elements (the green boxes) that finally provide us the
atmospheric concentration of CO2.

Land sink The model for the land sink is a global land module inspired from the OSCAR
model described in [Gasser et al., 2017]. Its objective is to present the action of the biosphere
as a carbon sink that is driven by the CO2 concentration in the atmosphere and the GMST.
Originally, the OSCAR model has nine spatially explicit regions in which there exist six biomes
whose list is bare soil, forests, mix of grasslands and shrublands, croplands, and pasture. Each
biome in each region has its own characteristics. For example, the Boreal forest and the
Amazonian rainforest are both considered as forest but they have different characteristics that
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distinguish them. However, in our model, we use a global model, which means that we limit
ourselves to a single region with a single biome that represent the average biosphere of planet
Earth. The model is represented in Figure 4 on page 12 and its different elements are presented
in Table 1 on page 13. One strong hypothesis is that the land-use change has a negligible
influence on the parameters of our land sink model, which is questionable as the deforestation
has a direct impact on the ability of the forests to store carbon.

Atmosphere CO2

concentration
Catm

Vegetation
carbon stock

Cv

Litter carbon stock
Cl

Soil carbon stock
Cs

Fnpp

Fm

αrhErh,l

Ef

Erh,l

Erh,s

Figure 4: The land sink model of the ERM climate model

Our model presents the biosphere as a set of three carbon pools: vegetation, litter and soil.
These pools exchange carbon through various fluxes that we characterise in order to find the
dynamic of the carbon stocks. The equations leading these fluxes are as follows:

Fnpp = Fnpp[0]

(
1 + βnpp log(

Catm
Catm[0]

)

)
(1 + γnppTsurface) (1)

The pressure dependence of the NPP corresponds to the phenomenon known as effect of fertil-
ization. Wildfires consume a part of the biomass each year, and their intensity is an increasing
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Inputs Description Unit
Catm Global atmospheric CO2 concentration ppm
Tsurface GMST anomaly K
Variables Description Unit
Fland Land carbon sink (positive if the land removes CO2 from the atmosphere) GtC.yr−1
Fnpp Global net primary productivity GtC.yr−1
Ef Global emissions from wildfire GtC.yr−1
Fm Global mortality flux GtC.yr−1
Erh Global heterotrophic respiration GtC.yr−1
Cv Global vegetation carbon pool GtC
Cl Global litter carbon pool GtC
Cs Global soil carbon pool GtC
Parameters Description Unit
Catm[0] Reference preindustrial atmospheric CO2 concentration ppm
Fnpp[0] Preindustrial Net Primary Productivity GtC.yr−1
Ef [0] Preindustrial emissions from wildfire GtC.yr−1
Erh[0] Preindustrial heterotrophic respiration GtC.yr−1
Cv[0] Preindustrial vegetation carbon pool GtC
Cl[0] Preindustrial litter carbon pool GtC
Cs[0] Preindustrial soil carbon pool GtC
βnpp Logarithmic sensitivity of NPP to CO2

γnpp Linear sensitivity of NPP to Tsurface K−1
βef Linear sensitivity of Ef to Catm ppm−1
γef Linear sensitivity of Ef to Catm K−1
βrh Linear sensitivity of the heterotrophic respiration to Catm ppm−1
γrh Exponential sensitivity of the heterotrophic respiration to Catm K−1
αrh Factor for metabolization of litter carbon to soil carbon

Table 1: Land sink model elements

function of the GMST anomaly. The effect of CO2 concentration variation is related to evapo-
transpiration.

Ef =
Ef [0]

Cv[0]
(1 + βef (Catm − Catm[0])) (1 + γefTsurface)Cv (2)

The biomass dies at a rate that is proportional to its quantity.

Fm =
Erh[0]

Cv[0]
Cv (3)

Erh,l =
1

1 + αrh

Erh[0]

Cl[0]
(1 + βrh (Catm − Catm[0])) exp(γrhTsurface)Cl (4)

Erh,s =
αrh

1 + αrh

Erh[0]

Cs[0]
(1 + βrh (Catm − Catm[0])) exp(γrhTsurface)Cs (5)

Thus the differential equations that characterise the system are the following :

dCv
dt

= Fnpp − Ef − Fm (6)

13



dCl
dt

= Fm − (1 + αrh)Erh,l (7)

dCs
dt

= αrh)Erh,l − Erh,s (8)

Which finally gives us the value of the land sink :

Fland = Fnpp − Ef − Erh,l − Erh,s (9)

The Preindustrial equilibrium implies :

0 = Fnpp[0]− Ef [0]− Erh[0] (10)

In the OSCAR model, parameters are calibrated on nine global vegetation model, we use these
parameters and their uncertainties to perform a Bayesian calibration as explained in Part 3 on
page 31.

Ocean sink In order to model the ocean action as a carbon sink, we use the so-called Mix-
layer pulse response function model that is firstly described in [Joos et al., 1996]. The main
particularity and advantge of this model is that it allows us to take efficiently into account the
carbonate chemistry and its non-linearities due to chemical balances corresponding to the CO2

dissolution into water:
CO2(g) 
 CO2(aq) (11)

CO2(aq) +H2O(l) 
 HCO−3(aq) +H+
(aq) 
 CO2−

3(aq) + 2H+
(aq) (12)

These reactions are also the ones that explain the acidification of the ocean through the forma-
tion of carbonic acid (see the Acidification of the ocean part on page 21 for more information).
These effects are modelled as follows : the carbon flux from the atmosphere to the mix-layer of
the ocean is proportional to the difference of CO2 partial pressure (converted in ppm) between
the atmosphere and the surface of the ocean (drivers, variables and parameters of the ocean
sink model are presented in Table 2 on page 15) :

Focean = kgαCO2 (Catm − pCO2,ocean) (13)

Where the CO2 partial pressure in the surface ocean is computed as follows [Takahashi et al., 1993]
[Joos et al., 1996] :

pCO2,ocean =

(
fp

(
αdic
αCO2

Cocean

)
+ Catm[0]

)
exp (γdicαsstTsurface) (14)

With fp defined as follows (λk, µk and nk are given in the Table 3 on page 16):

fp(x) =
5∑

k=1

(λk + µkTocean,0)x
k × 10−nk (15)

With this framework, the carbon stocked in the mix-layer is:

Cocean(t) =

∫ t

0

Focean(t
′)rsurface(t− t′)dt′ (16)
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Inputs Description Unit
Catm Global atmospheric CO2 concentration ppm
Tsurface GMST anomaly K
Variables Description Unit
Focean Ocean carbon sink (positive if the ocean removes GtC.yr−1

CO2 from the atmosphere)
pCO2,ocean Partial pressure of CO2 in the surface ocean ppm
Cocean Change in carbon pool in the surface ocean Gtc
Cocean,j Change in carbon pool of one of the sub-box of the model Gtc
Parameters Description Unit
Catm[0] Reference preindustrial atmospheric CO2 concentration ppm
αCO2 Conversion factor for atmospheric CO2 GtC.yr−1
kg Speed of gas exchange between the atmosphere and ocean surface yr−1.(A−1ocean)
Hocean Average depth of the surface ocean (assumed well-mixed) m
Aocean Area of the surface ocean m2

Tocean,0 Preindustrial temperature of the surface ocean K
αocean,j Fractions for each sub-box of the impulse response function

(with
∑
αocean,j = 1)

τocean,j Timescales of each sub-box of the impulse response function yr
γdic Sensitivity of CO2 solubility to global sea-surface temperature anomaly K−1
βdic Scaling parameter for the conversion from concentration in the surface

ocean to the CO2 partial pressure
αsst Scaling factor between global air and sea-surface temperatures anomaly
Ancillary Description Unit
parameters
cconversion Conversion parameter between ppm.m−2.yr−1 into µmol.m.kg.−2 µmol.m3

cconversion = 1.722 ∗ 1017µmol.m3.ppm−1.kg−1 .ppm−1.kg−1
αdic Conversion factor for carbon in the surface ocean µ mol.kg−1

αdic =
cconversion

HoceanAoceanβdic
.GtC−1

fp Function to emulate the carbonate chemistry
rsurface Impulse Response Function of the mix-layer

Table 2: Ocean sink model elements

By approximately decomposing rsurface as a sum of exponentially decreasing function (parame-
ters αj and τj are given in Table 4 on page 17 and coming from [Strassmann and Joos, 2018]):

rsurface(t) =
7∑
j=1

αj exp

(
− t

τj

)
(17)

The equivalent representation of the system is given by the Figure 5 on page 16. Thus, each
sub-box follows the following equation :

∀j ∈ [1, 7],
dCocean,j

dt
(t) +

Cocean,j
τj

(t) = αjFocean(t) (18)

Emissions from permafrost The Earth Risk Management (ERM) climate model presents
also a permafrost module, a system, whose response to the Global Mean Surface Temperature
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Atmosphere CO2 concentration
Catm

Mix-layer sub-box 1
Cocean,1, α1, τ1

Mix-layer sub-box 2
Cocean,2, α2, τ2

Mix-layer sub-box 3
Cocean,3, α3, τ3

Mix-layer sub-box 4
Cocean,4, α4, τ4

Mix-layer sub-box 5
Cocean,5, α5, τ5

Mix-layer sub-box 6
Cocean,6, α6, τ6

Mix-layer sub-box 7
Cocean,7, α7, τ7

Focean = kgαCO2 (Catm − pCO2,surface)

Figure 5: The ocean sink model of the ERM climate model

k λk µk nk
1 1.5568 -0.013993 0
2 7.4706 -0.20207 3
3 1.2748 -0.12015 5
4 2.4491 -0.12639 7
5 -1.5768 0.15326 10

Table 3: CO2 partial pressure function parameters

(GMST) anomaly is highly non-linear. This is quite innovative, as very few models or studies
take into account the thawing of permafrost, mainly because of the lack of data on the carbon
stock frozen in the ground and the dynamics of its emission. In this study, we use a global
permafrost model that includes both North-American and Eurasian carbon pools that comes
from [Gasser et al., 2018]. Our permafrost is represented as an initially frozen carbon pool
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j αj τj(yr)
1 0.24014 0.03855
2 0.27830 0.45254
3 0.23337 2.1990
4 0.13733 12.038
5 0.051541 59.584
6 0.035033 237.31
7 0.022936 ∞

Table 4: Ocean surface response function parameters

that thaws, driven by the increase in GMST. The carbon resulting from thawing permafrost is
not immediately emitted but shared into several carbon pools each of them following a law of
exponential decrease. The model is presented in Figure 6 on page 17 and its drivers, variables
and parameters are on the Table 5 on page 18. First and foremost, we suppose the existence

Atmosphere CO2 concentration
Catm, Tsurface

First thawed pool
Cth,1, αth,1, τth,1

Second thawed pool
Cth,2, αth,2, τth,2

Third thawed pool
Cth,3, αth,3, τth,3

Frozen permafrost
Cfr, ath, ãth

Epf

−dCfr
dt

= dath
dt
Cfr[0]

Tsurface

Figure 6: The ocean sink model of the ERM climate model

of a theoretical thawed fraction of permafrost ãth that is 0 at the Preindustrial equilibrium and
range between -pmin (meaning that the permafrost can freeze even more and capture carbon)
and 1 (in this case the permafrost is entirely thawed). The expression of ãth is given as follows
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Inputs Description Unit
Tsurface GMST anomaly K
Variables Description Unit
Epf Global emissions from permafrost GtC.yr−1
ãth Theoretical thawed fraction
ath Actual thawed fraction
Cth,1 First thawed carbon pool GtC
Cth,2 Second thawed carbon pool GtC
Cth,3 Third thawed carbon pool GtC
Cfr Frozen carbon pool GtC
Parameters Description Unit
Cfr[0] Preindustrial permafrost carbon pool GtC
αlst Scaling factor between global and local temperatures
γrt1 Sensitivity of heterotrophic respiration to Tsurface K−1
γrt2 Sensitivity of heterotrophic respiration to T 2

surface K−2

pmin Minimum theoretical thawed fraction
κp Shape parameter for theoretical thawed fraction
γp Sensitivity parameter to Tsurface for theoretical thawed fraction K−1
νthaw Thawing speed yr−1
νfroz Freezing speed yr−1
τth,j Timescale of emission for the j-th thawed pool yr
αth,j Fraction for the j-th thawed pool such that αth,1 + αth,2 + αth,3 = 1
κrt Scaling factor for the sensitivity of heterotrophic respiration to Tsurface

Table 5: Permafrost model elements

with αlstTsurface used as a proxy of the local mean temperature anomaly:

ãth = −pmin + (1 + pmin)

(
1 +

((
1

pmin
+ 1

)κp
− 1

)
exp (−γpκpαlstTsurface)

)− 1
κp

(19)

The permafrost dynamics is asymmetric because the thawing speed and the freezing speed are
different.

dath
dt

= ν(ãth − ath) (20)

With ν :

ν =

{
νthaw, if ath < ãth.

νfroz, if ath > ãth.
(21)

Hence the dynamics of the frozen pool :

dCfr
dt

= −dath
dt

Cfr[0] (22)

The flux is then shared into three carbon pools with their own characteristic time. The expo-
nential decrease that appears is due to the heterotrophic respiration (organisms in the soil and
the litter reject progressively the thawed carbon into the atmosphere) :

∀j ∈ [1, 3],
dCth,j
dt

= −αth,j
dCfr
dt
− 1

τth,j
exp

(
κrt
(
γrt1αlstTsurface − γrt2 (αlstTsurface)2

))
(23)
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j αth,j τth,j(yr)
1 8.054512776004199 0.027633473810345373
2 275.5876926027671 0.1483615603989628
3 3792.542282788026 0.8240049657906918

Table 6: Thawed permafrost response function parameters

With parameters αth,j and τth,j presented in Table 6 on page 19, we notice that the system is
operating on a very long-term time-scale which explains why there are only a few observation of
the emissions from thawing permafrost. Finally we obtain the carbon emissions from permafrost
:

Epf = −
3∑
j=1

dCth,j
dt
− dCfr

dt
(24)

These emissions are considered to be 100% CO2 whereas, in fact, CH4 accounts for 2.3% of the
carbon emissions of the permafrost [Gasser et al., 2018]. However, as there is no CH4 cycle in
this study, it is more useful and convenient to make this hypothesis.

Atmospheric CO2 concentration The CO2 atmospheric concentration is obtained with a
simple overall matter balance (summary Table 7 is on page 19):

αCO2

dCatm
dt

= E − Fland − Focean+ Epf (25)

Inputs Description Unit
E Fossil-fuels and land-use change emissions GtC.yr−1
Fland Land Carbon sink GtC.yr−1
Focean Ocean carbon sink GtC.yr−1
Epf Global emissions from permafrost GtC.yr−1

Variables Description Unit
Catm Global atmospheric CO2 concentration ppm
Parameters Description Unit
αCO2 Conversion factor for atmospheric CO2 GtC.ppm−1

Table 7: Permafrost model elements

2.3.2 Climate response

On Figure 2 page 10, the climate response is composed of the three red blocks, that provide
the Global Mean Surface Temperature and the global mean temperature of deep ocean.

Effective Radiative Forcing The Radiative Forcing is a key metric in terms of climate
change study and assessment because it acts as an intermediate variable between gas concen-
tration in the atmosphere and Global Mean Surface Temperature change. Hence, it allows
researchers to derive impacts from individual factors, such as a particular gas (despite the
immense complexity of atmospheric chemistry), which is particularly relevant concerning, for
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instance, policy-design. According to [IPCC, 2014a], the Radiative Forcing is defined as : "the
net change in the energy balance of the Earth system due to some imposed perturbation. It
is usually expressed in watts per square meter averaged over a particular period of time and
quantifies the energy imbalance that occurs when the imposed change takes place." In this
study, we use a very close metric, the Effective Radiative Forcing (ERF), that includes what
is called rapid adjustments and "makes ERF a better indicator of the eventual global mean
temperature response" [IPCC, 2014a]. From the Table 8.SM.1 of [IPCC, 2014b], we obtain the
ERM model formula whose elements appear in Table 8 on page 20 :

ERF = φ ln

(
Catm
Catm[0]

)
+ ERFex (26)

Where Fex is the non-CO2 ERF and gathers various effects such as other greenhouse gases

Inputs Description Unit
Catm Global atmospheric CO2 concentration ppm
ERFex Exogenous non-CO2 Effective Radiative Forcing W.m−2

Variables Description Unit
ERF Effective Radiative Forcing W.m−2

Parameters Description Unit
φ Radiative parameter for CO2 W.m−2
Catm[0] Preindustrial reference atmospheric CO2 concentration ppm

Table 8: Effective Radiative Forcing computation elements

(CH4, N2O ...), halogenated compounds, aerosols, volcanic activity. In the DICE model, it is
set exogenously, as the model is not complex enough to take all these effects into account (and
because the model focuses on the CO2 emissions and their impact). Likewise, non-CO2 is an
exogenous driver in the ERM climate model.

Global Mean Surface Temperature In order to get the GMST climate response due to
radiative forcing (i.e.energy imbalance in the Earth system we use the two-box model described
in [Geoffroy et al., 2013b] and [Geoffroy et al., 2013a]. This model is broadly the same as the
one used in the DICE model with different values for the parameters and an explicit physical
interpretation. It is composed of two layers, one that stands for the Earth surface and the
other one that features the deep ocean. The equation describing the Global Mean Surface
Temperature variation is coupled with the one describing the deep ocean as the two layers
exchange heat flux :

Θsurface
dTsurface

dt
= ERF − φ ln(4)

T4×
Tsurface − θexchange (Tsurface − Tdeepocean) (27)

One of the most important parameters of compact climate models appear in this equation,
the equilibrium temperature under quadrupled preindustrial atmospheric CO2, which is also
known as the Equilibrium Climate Sensivity (ECS). It is a prominent parameter because it
has a major effect on the dynamics (and the outputs) of a box-model such as the one we use.
This prominence is reinforced because the ECS is only estimated with a huge uncertainty : in
[Geoffroy et al., 2013b], the comparison between several GCMs gives a T4× average of 6.975K
with a standard deviation of 1.98K (considering a normal distribution, the 95% confidence
interval is consequently [3.1, 10.9]).

20



Global mean temperature of deep ocean The heat exchange flux from the surface to the
ocean warms the deep ocean :

Θdeepocean
dTdeepocean

dt
= θexchange (Tsurface − Tdeepocean) (28)

All elements of this model are compiled in Table 9 on page 21.

Inputs Description Unit
ERF Effective Radiative Forcing W.m−2

Variables Description Unit
Tsurface Global Mean Surface Temperature (GMST) anomaly K
Tdeepocean Deep ocean mean temperature anomaly K
Parameters Description Unit
φ Radiative parameter for CO2 W.m−2
T4× Equilibrium temperature under quadrupled preindustrial K

atmospheric CO2 (ECS)
Θsurface Heat capacity of the surface : atmosphere, land and upper ocean W.m−2.yr.K−1
Θdeepocean Heat capacity of the deep ocean W.m−2.yr.K−1
θexchange Heat exchange coefficient W.m−2.K−1

Table 9: Temperature variation model elements

In [Geoffroy et al., 2013a], is made the hypothesis of an efficiency parameter in the heat
exchange flux between the surface and the deep ocean. We took this into account in our study
but it does not appear, because it is mathematically completely equivalent as it is underlined
in the very same study.

2.3.3 Deriving impacts

With the ERM model, it is possible to derive estimates of certain impacts that are relevant to
assess the physics of the model (such as the Ocean heat content), or the impacts on sectors
that are not considered in the DICE model like the Acidification of the ocean or the Sea-level
rise.

Acidification of the ocean It is the on-going decrease in the pH of the Earth’s ocean due
to the carbon uptake action of the ocean that increases the quantity of carbonic acid in the
ocean (see equations (11) and (12) on page 14). Increasing acidity of the ocean could jeopardize
marine ecosystems, and hence disrupt provision of goods and services related to the ocean :
the consequences of this acidification could be very harmful to the human societies and their
environments, which is why it is a very valuable estimate when trying to forecast the future.
Thanks to the estimates provided in [Bernie et al., 2010] it is possible to compute the pH of
the ocean along an estimation of the atmosphere concentration. According to this paper, it is
possible to apply the rather simple formula :

pH = κpH
(
8.55− 0.00173× Catm + 1.3264× 10−6 × C2

atm − 4.4943× 10−10 × C3
atm

)
(29)

Here, the parameter κph is only a scaling factor used for uncertainty analysis, its default value
is 1.
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Sea-level rise It is one of the major risk on human societies because it threatens areas
like river deltas that are very densely populated or small islands by causing coastal erosion,
submergence or coastal flooding. According to [IPCC, 2014d] "Without adaptation, hundreds
of millions of people will be affected by coastal flooding and will be displaced due to land loss
by year 2100." These are very good reasons to estimate the sea-level rise on the pathways that
are computed by the DICE model. We obtain these estimates with the simple model described
in [Goodwin et al., 2017]. In this model, the two main sources of the sea-level rise, the ice melt
and the thermal extension are dealt with separately and summed to get the total sea-level rise.
The equation of the model are the following and the elements of the model are presented on
Table 10 on page 22:

Inputs Description Unit
Tsurface Global Mean Surface Temperature (GMST) anomaly K
Tdeepocean Deep ocean mean temperature anomaly K
Variables Description Unit
Hsea Global sea level rise mm
Hthx Global sea level rise from thermal expansion mm
Hice Global sea level rise from ice melt: glaciers and ice sheets mm
Parameters Description Unit
Θsurface Heat capacity of the surface : atmosphere, land and upper ocean W.m−2.yr.K−1
Θdeepocean Heat capacity of the deep ocean W.m−2.yr.K−1
Λthx equilibrium sea-level rise from thermal expansion mm.K−1
Λice equilibrium sea-level rise from ice melt mm.K−1
τthx Timescale of sea-level rise from thermal expansion yr
τice Timescale of sea-level rise from ice melt yr

Table 10: Sea-level rise model elements

dHthx

dt
= −Hthx

τthx
+
Λthx
τthx

ΘsurfaceTsurface +ΘdeepoceanTdeepocean
Θsurface +Θdeepocean

(30)

dHice

dt
= −Hice

τice
+
Λice
τice

Tsurface (31)

Hsea = Hthx +Hice (32)

Ocean heat content It refers to the heat absorbed by the ocean which is then stored as en-
thalpy. This metric is very valuable as it allows to evaluate the likelihood and, thus the accuracy
of the model. It is possible to compute the ocean heat content with the [Geoffroy et al., 2013b]
and [Geoffroy et al., 2013a] framework (model elements are on Table 11 page 23):

Uohc = αohcκohc (ΘsurfaceTsurface +ΘdeepoceanTdeepocean) (33)

The parameter αohc is nearly equal to 93% according to [Levitus et al., 2012]. In order to
comply with the custom, the final ocean heat content is computed minus its average over the
1955-2006 period.
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Inputs Description Unit
Tsurface Global Mean Surface Temperature (GMST) anomaly K
Tdeepocean Deep ocean mean temperature anomaly K
Variables Description Unit
Uohc Ocean heat content ZJ
Parameters Description Unit
αohc Fraction of total Earth energy imbalance used to heat the ocean
κohc Conversion factor from W.m−2.yr into ZJ (takes into acount the ZJ.m2.W−1.yr−1

Earth surface)
Θsurface Heat capacity of the surface : atmosphere, land and upper ocean W.m−2.yr.K−1
Θdeepocean Heat capacity of the deep ocean W.m−2.yr.K−1

Table 11: Ocean heat content computation elements

2.4 Results comparison with the DICE model

Now that we know the differences between the DICE climate model and the ERM climate
model, it is time to compare both models with the complete dice framework.

2.4.1 Set-up of the DICE-ERM model

Whereas Nordhaus DICE model is written in GAMS, our model is written in Python, using
the GEKKO package ([Beal et al., 2018] [Beal et al., 2018] [Beal and Hedengren, 2019]) with
the IPOPT solver [Wächter and Lorenz, 2006]. In order to have a more "physical" framework
and use the full potential of the GEKKO package, we do not use anymore the DICE economic
module in a discrete time-step but with a continuous time-step (for more information on the
DICE model, see Annex A page 46) . Hence the state equation for capital accumulation from

Kt+1 = (1− δK)τtime−stepKt + τtime−stepIt (34)

becomes
dK

dt
= −δKK + I (35)

where τtime−step is the computation discrete time-step (which disappears with a differential
framework) and δK is the depreciation rate of capital. Moreover, the definition of the inter-
temporal utility from :

W =
T∑
t=0

1

(1 + ρ)t
u

(
C(t)

L(t)

)
L(t) (36)

becomes

W =

∫ T

0

exp (−ρt)u
(
C(t)

L(t)

)
L(t)dt (37)

Except for these two equations, the economic module of the DICE-ERM model is exactly the
same as the one of the DICE model, and all drivers are the same10. However, it should be noted
that the climate model initial conditions are not the same as the ones in the DICE model. These
are rather very close except for the surface temperature : indeed, Nordhaus proposes a GMST

10i.e. the TFP, the energy efficiency, the backstop-technology cost, the population, the non-CO2 Effective
Radiative Forcing, the land-use change emissions and the maximum mitigation rate
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anomaly of 0.85 ◦C, whereas our best-guess value is 1.05 ◦C (average GMST over the 2013-2017
period as the DICE model has a 5 years time-step). This might be due to two reasons. On the
one hand, if the 2015 had been estimated considering the trend of the 10 previous years or so,
the global warming hiatus of the period 1998-2013 would be a good explanation of such a low
estimate for the 2015 GMST.

This part is not a comparison of the two climate models alone, but a comparison of both
climate models with the DICE optimization framework. Consequently, as the models do not
have the same climate response, the optimal allocation of production (between investment, mit-
igation an consumption) are not the same. So, we have to be very thoughtful when interpreting
the dynamics of both models and compare things carefully.

2.4.2 Distinct climate responses

Considering the fossil-fuel emissions of the 100 first years, it is possible to state that they are
quite the same (the GDPs are fairly the same, so is the control variable µ, which implies really
close industrial emissions) :

Figure 7: CO2 fossil-fuel emissions over the period 2015-2150

On the other hand, with these fairly identical emissions, the DICE physical module stores
way more CO2 :
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Figure 8: CO2 atmospheric concentration over the period 2015-2150

Even if the Effective Radiative Forcing at time t = 0 are the same :

Figure 9: Effective Radiative Forcing over the period 2015-2150

The gradient of the GMST at time t=0 is less important in the case of the DICE model :
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Figure 10: GMST anomaly over the period 2015-2150

That shows us that the ERM climate model corrects at least partly11 some weaknesses of
the DICE physical module, that is to say storing too much carbon in the atmosphere while
responding too weakly to Effective Radiative Forcing. It is really interesting to notice that these
different dynamics imply very different long-term pathways (due to the "choices" made by the
social-planner). Thus the long-term GMST dynamics are strikingly different (see Figure 11 on
page 27). In the DICE model outputs, after a peak around 2160 little above a 4◦ anomaly,
the GMST decreases relatively steadily due to a mitigation rate that allows for huge negative
emission12. On the other other hand, the GMST of the DICE-ERM model is stable and is
seems that an "equilibrium" is reached. But why is a decreasing temperature a more optimal
pathway? This is due to the fact that the cost of reducing the emissions outweighs the potential
economic benefits that would happen. As a matter of fact, it is possible to see on Figure 29
on page 52 in the Annex C, that if the ocean still acts as sink, the land sink does not act as
such as soon as the emissions from fossil fuels are negative. Aside of this, the asymmetry of the
permafrost - the thawing is faster than the freezing - limits the possibilities of a negative CO2

imbalance. To sum this up, the ERM has a quite different dynamics than the DICE climate
model that, in particular, makes it more complicated to reduce the CO2 concentration in the
atmosphere for a given cost, and finally results in a very different GMST profile.

11To be sure of this and purely compare the climate models alone, we should have performed some comparison
experiments with state-of-the-art climate models, like the ones produced for the CMIP5 phase.

12For the dynamics of the parameter µ see Figure 27 on page 51 in the Annex C. For the dynamics of the
emissions from fossil-fuels see Figure 28 on page 51 in the Annex C.
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Figure 11: GMST anomaly over the period 2015-2515

2.4.3 Diverging economic indicators?

Looking at the GDP over the period 2015-2515, some features of the models output are
striking.

Figure 12: Gross Domestic Product over the period 2015-2515
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First, their dynamics are quite the same, which is good news as they share the same economic
model. However, they progressively diverge. As the population and the TFP are exogenously
fixed and are the same, this difference must come from the accumulation of the capital :

Figure 13: Capital accumulation over the period 2015-2515

This is quite strange since :

• the saving rate obtained with a simulation of the DICE-ERM model is higher compared
to the one obtained with the DICE model13

• the mitigation rate is lower in the case of the DICE-ERM model14, and therefore is the
cost of mitigation,

• the cost due to climatic damages are globally smaller15.

Consequently, the capital in the DICE-ERM model should be greater than with the DICE
model. The explanation comes from the capital accumulation equation : the discrete equation
gives a very slightly larger capital accumulation than the differential one and this small differ-
ence increases over time due to the accumulation of capital that drives the economic growth16.

13See Figure 30 on page 52 in the Annex C.
14See Figure 27 on page 51 in the Annex C.
15See Figure 31 on page 53 in the Annex C.
16An intuition from this result might come considering these two different equationsKt+1 = (1−δK)Kt+I and

dK
dt (t) = −δKK(t) + I with I constant and K0 = K(0) < I

δk
. The solutions are Kt = (1− δK)t

(
K0 − I

δk

)
+ I

δk

and K(t) =
(
K(0)− I

δk

)
exp(−δK) + I

δk
. As K(0) − I

δk
< 0 and (1 − δK)t = exp (log(1− δK)t) < exp(−δK)

because ln(1− δK) < −δK , we obtain: Kt > K(t).
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Figure 14: Social Cost of Carbon over the period 2015-2515

2.4.4 What about the Social Cost of Carbon?

Finally, let us study the final object of this study and output of both models : the Social Cost
of Carbon (Figure 14 on page 29). At first sight, it is possible to state that both estimates
share the same order of magnitude. If we look at it closer17, it is possible to see that both
SCCs are quite the same during the first years of the simulation. This is a logical conclusion,
as the behaviours of the social-planner are very similar over the first period. The differences
in terms of optimal choices begin with the possibility of negative emissions (i.e. µmax > 1). At
this moment, the SCC in the DICE model keeps on rising, whereas it slowly decreases with the
DICE-ERM model. To understand this phenomenon, we have to refer to the definition of the
SCC : It is the marginal global cost to society that results from the emission of an extra tonne
of carbon at time t along a determined emission trajectory. In the case of the DICE model, the
mitigation and the carbon sinks are at saturation, which means that a supplementary emission
of CO2 would have a "full" impact on the system. whereas with the DICE-ERM model, as
soon as there is some negative emissions, the land sink acts as a source of CO2 rather than
as a CO2 uptake, so a supplementary marginal emission of CO2 would only have a very small
impact on the economy because it would be absorbed easier by the land sink, which explain
this decreasing and lower Social Cost of Carbon. It is even possible to notice that effect is
"anticipated by the social planner, as the SCC begins to decrease even before the beginning
of negative emissions. In any case, even if this phenomenon is interesting to understand the
source of the SCC dynamics, it is not particularly relevant to consider the value of the SCC
after 2120-2150, what matters is the dynamics during the 21st century.

17Zoom over the period 2015-2150 on the Figure 32 on page 53 in the Annex C
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To put this part in a nutshell, we are now able to run simulation of the DICE model and
compute the SCC with a new climate module, that is more reliable, considers more physical
phenomenons, and is more physically-founded than the classic physical module. These upgrades
introduce distortion in term of climate response, and in term of optimal choices, that result
in a probably more suitable estimate of the SCC. However, is it possible to claim that this
estimation of the SCC is really more robust? Not really, currently, this model only displays
one estimate, and does not take into account the known uncertainty over physical parameters,
which is why we now want to perform a particular calibration that should allow us to obtain
relevant and robust uncertainty ranges over the Social Cost of Carbon. Moreover, it appears
that the drivers play a very important role in the dynamics of the system and therefore their
design needs to be further developed and studied.
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3 Bayesian calibration and Monte Carlo estimation
None of the parameters used by the ERM climate model are known with certainty; for each,

there are a certain range of permissible values, some more likely than others. Thus, the same is
true for all the estimates we compute: it is not possible to produce them with certainty. How
then to determine the uncertainty on these results? One possible way to do this is to use Monte
Carlo analysis coupled with a very particular calibration, based on Bayesian probabilities which
we propose to present in this section.

3.1 Basic principles and key ideas

Since most of our parameters are known only with a certain uncertainty, it is better to regard
them not as simple point values, but as a probability distribution that represents the possible
values for these parameters based on our current knowledge. By randomly sampling parameter
sets from these probability densities and using them as physical parameters of the ERM model,
we can obtain not only single values, but probability distributions of our outputs. This is the
main idea behind Monte Carlo methods, drawing large samples of slightly different parameters
to assess the uncertainties of the final estimates.

Is that fully relevant? Not completely! When we draw our parameter sets, some sets have
the same probability of being drawn but are not as likely. Indeed, uncertainties about the
parameters are given independently of each other (because the parameters are given indepen-
dent probability laws, since they do not come from the same model, i.e. parameters are drawn
independently), while some combinations of parameters are more realistic than others. For
example, a set of parameters leading to a low land sink and a low ocean sink can be drawn as
probably as a set leading to a low ocean sink and a very high land sink, whereas it is much
less likely given the historical evolution over the past 150 years. What we would like is a joint
probability density on all parameters of interest that would allow us to assess the uncertainty in
the model as a whole. This is possible with a Bayesian framework. Giving the uncertainty on
the parameters (coming from complex models) as prior distribution, it is possible to constrain
them with observations provided by historical data and obtain a posterior joint distribution
of the parameters. Finally, with samples of this joint distribution it is possible to assess the
uncertainties of the ERM climate model.

Let us first briefly explain the basic principles of Bayesian inference, before going into the
details of the calibration. According to Bayes’ theorem :

P(H|E) = P(E|H)P(H)

P(E)
=

P(E|H)P(H)∑
H P(E|H)P(H)

∝ P(E|H)P(H) (38)

H stands for the hypothesis, i.e. what is our prior knowledge of the parameters, so P(H) is
the prior belief over the parameters. E stands for the evidence that we have, i.e. the data
we use to constrain the distribution of the parameters. Thus P(E|H) is the likelihood of the
observation with some set of parameters : it allows us (or rather, the calibration algorithm) to
guess whose sets of parameters are the most likely because they result in the most consistent
outputs. This is what is provided by P(H|E), the posterior probability. In order to approximate
the posterior probability distribution, there are two different methods : Markov Chain Monte
Carlo (MCMC) and Variational Bayesian. Since we calibrate a lot of parameters, we prefer a
Variational Bayesian method for reason of computation time.

31



3.2 Set-up and calibration data

Indeed, we use a variational bayesian algorithm [Kucukelbir et al., 2015] with the language
Stan [Carpenter et al., 2017], [Stan Development Team, 2019], adapted to Python with the
package Pystan [Riddell, 2015], the results - samples of interest parameters and historical state
variables - are finally stored in xarray files, a useful format when dealing with big amounts of
complex data [Hoyer and Hamman, 2017].

Our calibration idea is here to run the model over the historical since 1750, and to constrain
final results with observations.The logical next step would be to run the model on the inputs,
the CO2 emissions and the non-CO2 Effective Radiative Forcing. However, these are not very
good inputs, since the latter are very little known data, with very important uncertainty. Plus
the outputs - the ones that are constrained - would be the CO2 atmospheric concentration and
the GMST, that are known with a very good accuracy. Thus, we would have a real problem
in terms of information flow: it is quite complicated, from an imprecise data, to obtain an
estimate that we would like to constrain with precise information18.

Therefore, we proceed the opposite way. We use the GMST and CO2 atmospheric concentra-
tion data as inputs of the model and by reversing some equations of the model, we compute the
anthropogenic CO2 emissions and the non-CO2 Effective Radiative Forcing. The constraints
we use are detailed in Table 12 :

Variables Description Mean Standard Source
deviation

Focean Cumulated ocean sink over 150 GtC 20 GtC

[Le Quéré et al., 2018]

the period 1870-2017
Focean Mean ocean sink over 2.4 GtC.yr−1 0.5 GtC.yr−1

the period 2007-2017
Fland Cumulated land sink over 100 GtC 50 GtC

the period 1870-2017
Fland Mean land sink over 3.2 GtC−1 0.7 GtC−1

the period 2007-2017
E Cumulated CO2 emissions 615 GtC 80 GtC

the period 1870-2017
Fland Mean CO2 emissions over 10.8 GtC−1 0.8 GtC−1

the period 2007-2017
ERFex Mean exogenous ERF over 0.438 W.m−2 0.828W.m−2 [IPCC, 2014a]

the period 2006-2017
Uohc Mean ocean heat content over 164 ZJ 6ZJ [Levitus et al., 2012]

the period 2006-2017

Table 12: Observational constraints for the Bayesian calibration

18This is, however, what we have done at first. If this is not the best way to do it, it still doesn’t work too
badly. Indeed, this reduces the posterior distribution too much because we provide too much information by
simulating the imprecise inputs. Nevertheless the distributions obtained are still appropriate. The only problem
is that they reduce too much the uncertainty that can exist on the output parameters of the DICE-ERM model.
The results provided in part 4 (A new scenario approach with the Shared Socioeconomic Pathways) come from
this calibration.
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Part of the Parameter Unit Mean Standard Sourcemodel deviation
Transversal

Catm[0] ppm 278 3 [IPCC, 2014c]
parameter [Etheridge et al., 1996]

Land sink

Fnnp[0] GtC.yr−1 51.84 10.4

[Gasser et al., 2017]

Ef [0] GtC.yr−1 3.437 0.687
Erh[0] GtC.yr−1 48.4 9.68
Cv[0] GtC 583.2 116.6
Cl[0] GtC 122.2 24.44
Cs[0] GtC 1674 334.8
βnpp 0.6264 0.333
γrh K−1 0.02063 0.003172

Ocean sink

kg yr−1 0.1104 0.022 [Joos et al., 1996]
Tocean,0 K 17.49 0.2
γdic K−1 0.04721 0.00944 [Strassmann and Joos, 2018]
βdic 0.5671 0.1134

Permafrost γp K−1 0.1378 0.0276 [Gasser et al., 2018]
Cfr[0] GtC 557.6 11.5

ERF φ W.m−2 5.345 0.55 [IPCC, 2014b]
T4× K 6.975 1.91 [Geoffroy et al., 2013b]Climate Thetasurface W.m−2.yr.K−1 8.175 0.9

response Thetadeepocean W.m−2.yr.K−1 133.7 45.69 [Geoffroy et al., 2013a]
thetaexchange W.m−2.K−1 0.8679 0.2839

Table 13: Prior distribution of the parameters

On Table 13 on page 33 it is possible to find the calibrated parameters19, with their prior
means and standard deviation. In order to model the uncertainty on the temperature and
atmospheric concentration of CO2, we add a auto-correlated random noise of zero mean around
the best guess. Its standard deviation is equal to the one between the different observation
datatsets (or the one estimated) by researchers. The inputs takes the following form for the ith
simulation:

Tsurface,t = Tsurface,bestguess,t + σTsurface,trTsurface,i,t (39)

Catm,t = Catm,bestguess,t + σCatm,trCatm,i,t (40)

With the rsometing,i,t following an AR1 process :

rTsurface,i,t+1 = ρTsurfacerTsurface,i,t + εTsurface,i,t (41)

Where rTsurface,i,0 = 0 and εTsurface,i,t has a zero mean and a standard deviation equal to√
1

ρTsurface
− 1, so that the standard deviation limit of rTsurface,i,t is 1.

rCatm,i,t+1 = ρCatmrCatm,i,t + εCatm,i,t (42)
19All the prior densities are normal distribution restricted to admissible value (most values cannot be nega-

tive). Sometime, when the uncertainties are not available, we put 20% of the value of the parameter as prior
uncertainty.
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Where rCatm,i,0 is chosen so that Catm,0 = Catm[0] and εCatm,i,t has a zero mean and a standard
deviation equal to

√
1

ρCatm
− 1, so that the standard deviation limit of rCatm,i,t is 1.

We calibrate ρTsurface and ρCatm the following way20. For each time-serie is is possible to
compute the average slope over the years 2007-2017 with an OLG estimator. With all these
slopes, we obtain a slope distribution, really close to a normal distribution, with a standard
deviation that is a stricly decreasing function21 of ρTsurface . Furthermore, we can compute
the standard deviation of the average slope over the period 2007-2017 of our different GMST
datasets. Finally it is possible to find the good value of ρTsurface , which is equivalent to a
characteristic time, with ρtTsurface = exp

(
−t

τTsurface

)
. We obtain τTsurface = 156 years and τCatm =

74 years.

3.3 First results and assessment of uncertainties

After the calibration, 1000 samples of the parameters are drawn and their corresponding
historical data are computed22. Figures 33 and 34 on page 54 of the Annex D show us the sim-
ulated historical evolution of the land sink and the ocean sink as well as the estimates provided
by the Global Carbon Budget [Le Quéré et al., 2018]. What is interesting is to consider the
impact of the calibration on the climate dynamics of the DICE-ERM model and on the SCC
as well :

Figure 15: Comparison between the DICE-ERM model calibrated and the DICE model over
the period 2015-2200

20The example is made with Tsurface, we followed the exact same process for Catm
21These considerations are completely empirical, since these temperature time-series come from random sam-

pling. However, it must be possible to derive a limit distribution of slope that only depends from the parameter
ρTsurface

22From this point on, the figures and data do not come from the calibration described in the previous
paragraphs but from a calibration with the CO2 emissions and non-CO2 ERF as inputs.
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The good news is that calibration allows us to obtain very consistent results with what we
had previously obtained. We obtain an uncertainty of about 30% of the value at most, which
may appear quite low. On the other hand, if we constrain the temperature by setting a maxi-
mum value (here, 2 and 2.5◦), this uncertainty increases considerably and is then worth more
than 150% of the SCC23 whereas due to the constraint, the uncertainty on the temperature gets
lower. Once again, we can see the extremely important influence of the maximum mitigation
rate. Indeed, once negative emissions are possible, the SCC falls immensely quickly because of
the phenomenon described in the previous section.

Figure 16: GMST and Social Cost of Carbon of the DICE-ERM model when the temperature
is constrained

Thus, starting from modeling uncertainty constrained by observations, we were able to cal-
ibrate the erm model in a Bayesian way. This allows us to perform Monte Carlo simulations
on the DICE-erm model, which allow us to assess the uncertainty about the SCC. However, we
still notice that drivers have a very (too much?) important influence on the dynamics of the
SCC. It is therefore of utmost importance to study these major influence factors, in order to
assess how they affect the Social Cost of Carbon.

23For a better figure of the SCC with a 2.5◦, see Figure 35 on page 55 in the Annex D
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4 A new scenario approach with the Shared Socioeconomic
Pathways

As noted in previous sections, the drivers of the DICE model significantly influence the entire
dynamics of the model and, in particular, the Social Cost of Carbon. Thus, it is necessary to
set up a study framework to estimate the latter according to different scenarios. We therefore
propose to adapt the thinking framework proposed by the SSP scenarios, to estimate the social
cost of carbon in different situations characterized by consistent socio-economic assumptions
for each of them.

4.1 The SSP framework

The Shared Socioeconomic Pathways (SSPs) are a framework of scenarios that aims at spanning
for the potential outcomes of the world economy along two socio-economic axis: the challenge
for mitigation, and the challenge for adaptation. In [O’Neill et al., 2014], they are defined
as "reference pathways describing plausible alternative trends in the evolution of society and
ecosystems over a century timescale, in the absence of climate change or climate policies"24.
To each SSP are associated Shared climate Policy Assumptions (SPA) that are summed up in
Figure 17:

Figure 17: The Shared climate Policy Assumptions of the SSPs [Bauer et al., 2017]

24It is interesting to notice that SSPs do not consider the negative feedback on the economy and society due
to global climate change, while our model, on the contrary, uses the potential damage to determine an "optimal
pathway".
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These assumptions are first then quantified as population scenarios [KC and Lutz, 2017]
(IIASA) and then as GDP scenarios [Dellink et al., 2017] (OECD), [Crespo Cuaresma, 2017]
(IIASA), [Leimbach et al., 2017] (PIK). After this, they are crossed with the Representative
Concentration Pathway (RCP) scenarios, in order to obtain a SSP RCP matrix that couples
socio-economic issues and various gas concentration trajectory as shown in Figure 18:

Figure 18: The SSP RCP matrix [Riahi et al., 2017]

These crossed scenarios are available online on the SSP-database2526 [Riahi et al., 2017].
The interest of this framework is not only that it provides quantitative scenarios data with
their own coherence, but also that it offers interpretation keys relating to these scenarios.
Our idea is therefore to simulate the SSP scenarios with the DICE-ERM model, in order to
determine the Social Cost of Carbon (and its uncertainty) over classic scenarios for the scientific
community. A difficulty that now presents itself to us is that we must extract the drivers for
the model from the SSP-database and, then, extend them from the period 2015-2100 to the
period 2015-2515.

4.2 How to create long-term extensions of SSP scenarios?

In order to run the DICE-ERM model on the SSP scenarios, we need to translate the infor-
mation provided by the SSP-database into the drivers that are required to run the model: the
population, the Total Factor of Productivity, the energy efficiency, the backstop technology
price, the non-CO2 Effective Radiative Forcing, the CO2 emissions from land-use change and
finally the maximum mitigation rate. We divide the drivers into two categories, the first four,
those that depend only on the SSP and the last three, that depend on the couple SSP-RCP.
After extracting the driver, there remains a second test, extend it until 2515 in a coherent way,
both with the scenario and with the DICE model framework. Let us now present briefly how
to obtain and extend each driver.

25SSP-database hyperlink
26Each SSP is described in the following articles: SSP1 [van Vuuren et al., 2017], SSP2 [Fricko et al., 2017],

SSP3 [Fujimori et al., 2017], SSP4 [Calvin et al., 2017], SSP5 [Kriegler et al., 2017].
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Population The population is a peculiar case. The DICE model framework requires a limit
population, which is not possible to guess or assess from the SSP population scenario. Since,
it is not possible to use a fitted logistic equation to obtain population scenario for the SSP, the
best thing to do is to run the SSP population model itself, with some assumptions. From the
data available online27, we suppose that:

• Each country mortality rate remains the same as in the year 2100,

• The Total Fertility Rate (TFR) of all countries converge linearly to 1.75 toward 2200 and
then remain constant over time [Basten et al., 2013] [Goujon and Fuchs, 2013].

For the three first SSPs, we obtain:

Figure 19: Population for the SSP scenarios (in tens of billions of inhabitants)

Total Factor of Productivity In the SSP-database, it is possible to get the GDP and the
total consumption. By subtracting them it is possible to compute the investment, and then the
accumulation of capital, which finally provides the TFP until 2095, as well as its growth rate.
In the DICE model, we have:

log(gTFP (t)) = log (1− δTFP ) t+ log(gTFP (0)) (43)
27Wittgenstein Centre Database
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So, we regress the log(gTFP (t)) over time to compute the future growth rate of the TFP, and
then the TFP28.

Energy effiency The energy efficiency σ can be computed by dividing the baseline CO2

emissions from fossil-fuels by the GDP (we rescale it so that, it shares the same value as the
DICE model in 2015). In the DICE model, σ is represented as follows:

σ(t) = σ0 exp

(
−0.0152

0.001
(1− exp(δσ(t− 2015)))

)
(44)

Therefore, we fit the σ time-serie over the period 2050-2095 with the above equation to derive
the parameter δσ, and extend σ until 2515.

Backstop technology price From the SSP-database, it is possible to get the carbon price of
each SSP scenario. In the DICE model, the same index is computed with the following formula:

Pcarbon(t) = Pbackstop(t)µ(t)
θ2−1 (45)

With:
Pbackstop(t) = Pbackstop(0)(1− gbackstop)t (46)

Since, we can compute the mitigation rate µ (see paragraph bellow), we perform an linear OLG
regression on µ and t:

log (Pcarbon(t)) = log (Pbackstop(0)) + log (1− gbackstop) t+ (θ2 − 1) log(µ(t)) (47)

So we obtain the backstop technology price at t = 0 and its growth rate.

Non-CO2 Effective Radiative Forcing To get this driver, we subtract the CO2 Effective
Radiative Forcing to the total ERF. Then we arbitrarily keep the value of 2100 as constant.

Land-use change CO2 emissions The land-use change emissions can be obtained directly
from the SSP-database. To extend them, we add an exponential decrease of the following form
so that the characteristic time is 50 years, the derivative in 2100 is zero and the emissions are
continuous in 2100:

Eland(t) = Eland(2100)

(
t− 2100

50
+ 1

)
exp

(
−t− 2100

50

)
(48)

Maximum mitigation rate As explained in the previous paragraphs, we know how to
compute the energy efficiency σ, so, for a given RCP, it is possible to compute the actual
mitigation rate on the SSP-RCP couple. We suppose that this mitigation rate can be considered
as the maximum mitigation rate for the driver29.

µmax(t) = 1− GDP (t)

σ(t)Eind(t)
(49)

28For the SSP3, we first compute an increasing TFP growth rate, which is not realistic at all. So, we correct
the growth rate with an exponential decrease with a characteristic time of 100 years. It is set so that it preserves
the slope of the growth rate in 2100 and make the growth rate converge to 0

29The σ rescale increases very slightly the value of µ compared to the case there would have been no rescale.
This is rather consistent with what we are looking for for the DICE-ERM model: to have a little more freedom
to look for the optimal trajectory, and try to emulate the SSP scenarios
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The drivers for the SSP2 have the following form, the drivers for SSP1 and SSP3 are in the
Annex E3031:

Figure 20: Drivers for the SSP2 compared to the DICE model drivers

4.3 Monte Carlo analysis with the SSP scenarios

Now that all pieces of the simulation of the SSPs with the DICE-ERM model have been
presented, there is very little to add to describe the set-up. For each SSP-RCP scenario, we
perform 1000 simulations with samples drawn from the Bayesian calibration32. As it is done
in the DICE model, we constrain the saving rate at the end of the simulation to avoid edge
effects due to a "burn everything" optimal behaviour. Moreover, and this is quite important,
we do not constrain the Effective Radiative Forcing in 2100. Thus, a scenario on a RCP2.6 will
not necessarily present an Effective Radiative Forcing equal to 2.6 W.m−2 in 2100: we give the
social planner the means to reach a certain target, but we do not constrain it so that it reaches
it33

So, first of all, let us consider the fossil-fuel emissions, since they are the expression of the
"choices" made by the social-planner:

30The SSP4 and SSP5 population scenarios were not available in time, so we were not able to perform the
simulations for both these SSPs

31From this point, we will only present the results for the SSP2, since it is considered as the middle of the
road scenario. The equivalent results for SSP1 and SSP3 are in the Annex E

32We repeat that the results presented here are not from the previously presented calibration, but sadly from
a previous calibration of lower quality.

33Constraining the ERF would however be very interesting because it would have a particularly strong effect
on the value taken by the SCC. As a matter of fact, it would be the next step of the project.
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Figure 21: Fossil-fuel CO2 emissions of the DICE-ERM model on SSP2 scenarios compared to
the SSP data

It immediately shows that this way to run the SSPs scenarios is not a good way to emu-
lates these scenarios, because the choices made by the social planner are completely different
from what is expected in the SSP scenarios. However, is shows that without constraints, the
maximum mitigation rate is only binding for RCP6.0 and the Baseline. Moreover, it is possible
to see that, the climate uncertainty has very small influence on the "decisions" made by the
social-planner, whereas it has a quite bigger impact on the Effective Radiative Forcing34 and
the Global Mean Surface Temperature on Figure 22 page 42.

34Figure 41 on page 58 in the Annex E
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Figure 22: GMST anomaly of the DICE-ERM model on SSP2 scenarios compared to the SSP
data

Figure 23: GDP of the DICE-ERM model on SSP2 scenarios compared to the SSP data

So, it appears that the climate uncertainty effect do not translate into the decision-making
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in the model. In fact, the GDP is nearly unchanged (see Figure 23 on page 42) because the
damage function do not target the growth factors, but its outcome35. Then, it is logical that
the impact of fossil-fuel emissions is just a marginal factor for resources allocation.

4.4 An assessment of the SCC climate uncertainty?

All these considerations result in a Social Cost of Carbon that does not really depend on the
RCP-dependant drivers as it is possible to see on Figure 24 on page 43 for the SSP2.

Figure 24: Social Cost of Carbon for the SSP2

Comparing the different SSP (Fifure 25 on page 44 it is possible to conclude that the main
factors influencing the Social Cost of Carbon are the socio-economic assumptions that underlie
behind each scenario. In fact, [Ricke et al., 2018] present the uncertainty resulting from cross-
country SCC comparison, and it appears to be much more important than the one we have
computed36. Once again, it is quite logical, the economic dynamics is highly dependant on the
economic drivers and assumption, and the climate influence is not strong enough so that the
existing uncertainty over the future of climate have a real influence over the loss or gain of well-
fare. Thus, the climate uncertainty over the SCC mostly relies on the underlying socio-economic
hypothesis.

35In [Moore and Diaz, 2015], the impacts of climate change are on the TFP growth rate, or to the depreciation
rate of capital. In that case, climate change indeed slows growth a lot (in particular in poor countries).

36In this study, the uncertainty also depends on the RCP-SSP couple. It is possible to see that the SCC does
not depend enormously on the RCP but more on the SSP. Moreover, with a 66% uncertainty range , the values
of SCC ranges (in 2020) from -100$ to 1500$ for SSP1-6.0, from -100$ to 2000$ for SSP2-6.0, from 0$ to 4000$
for SSP3-8.5. The socio-economic disparities clearly outweigh the climate uncertainty.
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Figure 25: Comparison of the Social Cost of Carbon over different SSPs

To conclude, we use the SSP scenarios as a framework to assess the Social Cost of Carbon
and its uncertainty over different and relevant scenarios. This allows us to obtain a matrix
of carbon costs according to different dimensions, temporal, socio-economic, and in terms of
concentration. Crossing socio-economic assumptions with (potential) concentration pathways,
we obtain the following result : the Social Cost of Carbon mostly depends on the growth
model assumptions that are used to simulate the economy. The distributional issues due to
cross-countries inequalities of development and risk against global climate change are far more
important deciding factors than the uncertainty over future climate change (at least with this
model). However, despite all that, it is quite likely that constraining the Effective Radiative
Forcing to follow a RCP scenario would have a enormous impact on the SCC, as it has been
shown at the end of the part 3. Changing the way damage is applied also appears to be a very
promising route.
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Conclusion
To conclude, we have presented a compact climate model that improves the DICE model,

and provides quite different estimates of the Social Cost of Carbon. The Bayesian calibration
of this model allows us to evaluate the uncertainty on the Social Cost of Carbon due to the
existing uncertainty over future climate knowledge. With the SSP scenarios, we can thus
propose a more relevant value of the Social Cost of Carbon. These estimates are more robust
because they present a range of uncertainty and are given for precise, defined and widely studied
scenarios.

The estimation of the climate uncertainty is essential to have an enlightened view on the
Social Cost of Carbon in order to use it as a policy-design tool. However, the conclusion arising
from these simulation is not very optimistic. Indeed, we have assessed the climate uncertainty
on the Social Cost of Carbon but we have also watched that the climate is not the major
source of uncertainty on the Social Cost of Carbon. The estimates of the Social Cost of Carbon
mostly depend on the exogenous drivers and the climate system response do not appear to be a
determining factor for them, nor for the optimal pathway. It kind of means that the Social Cost
of Carbon does not really depend on the carbon itself but mostly on technological scenarios,
which is not really relevant when designing policies for climate mitigation. Especially since
technological future is rather uncertain.

A exciting approach to counter this problem is the use of constraints that can be imposed on
state variables, such as the Effective Radiative Forcing, the Global Mean Surface Temperature
anomaly or even the sea level rise or the acidification of the ocean. However, it raises the
question of the good use and the scope of the model : do constraints on the climate are
relevant? The DICE model has been designed to endogenize the climatic risk and potential
losses. So, specifying a trajectory in terms of temperature to the model because it does not
take into account the real climate risk, is it not basically admitting that it is not efficient? Is it
not better in this case to change the model, or to profoundly change its structure to obtain a
better coupling between climate and economy? We have seen that inequalities in distributions
are particularly important, much more so than the uncertainties arising from climate change.
Is an aggregate model like this really relevant in this case to deal with such different economic
situations? Are Policy Optimization Models really relevant, should not we rely only on Policy
Evaluation Models that do not suffers the "flaws" resulting from the optimization process?
Or maybe is it possible to create better behaviour-relevant optimization models that procure
brighter results.
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A Design and operation of the DICE model
The DICE model has been created and updated by William Nordhaus since 1992. Considered

as a pioneering model, the DICE model is one of the very first IAMs that couples the climate and
the economy through a damage function. Still one of the most important model in the field of
climate economics, the it is a reference model for determining the SCC. For its groundbreaking
breakthroughs, William Nordhaus has been awarded the NObel Price of ecnomics in 2018. The
role of this part is to present the last version of the DICE model37. Most information can be
found in [Nordhaus, 2013] and [Nordhaus, 2017].

A.1 Representation of the DICE model

Basically, the DICE model couples a neo-classical growth model with a simple climate model,
with a carbon cycle. Its design is pretty simple, and quite efficient :

• Production in the economic module results in CO2 emissions due to fossil-fuels burning,

• These emissions increase the CO2 concentration in the atmosphere through the carbon
cycle,

• This results in a higher Effective Radiative Forcing, that implies a global warming,

• This warming has an impact on the GDP through a function of damage

.

A.2 The economic module

Now let us describe the equations underlying the economic model of the DICE model.

A.2.1 A Ramsey model framework

First of all, the economic module is at first sight a Ramsey-Cass-Koopmans model [Ramsey, 1928]
[Cass, 1965] [Koopmans, 1963]. The social planner aims a maximising the inter-temporal util-
ity38 :

W =
T∑
t=0

1

(1 + ρ)t
u

(
Ct
Lt

)
Lt (50)

With ρ the discount rate (pure rate of social time difference)„ Ut the consumption (in trillion
of 2010$ per year),Lt the population (in billion of inhabitants), and u the utility :

u(c) =
c1−α − 1

1− α
(51)

37The General Algebraic Modeling System (GAMS) code of this version is available online on Nordhaus
Website

38For computation purpose, the model has a finite horizon. Thus, the saving rate is constrained over the last
period to avoid "burn everything" edge effect, so that it reach an optimal saving rate: s∗ = γ δK+0.004

δK+0.004∗α+ρ .
This refers to the classical long term saving rate of the Ramsey model, with a TFP growth rate equal to 0.004
(at the end of the horizon, the growth rate of TFP is 0.006
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Figure 26: Schematic representation of the DICE model

where θ is the elasticity of the marginal utility of consumption. The gross output has the
follows a Cobb-Douglas function :

Yt = AtK
γ
t L

1−γ
t (52)

With At the Total Factor of Productivity (TFP), Kt the capital (in trillion of 2010$) and γ the
elasticity of gross output with respect to capital. The accumulation of capital is given by :

Kt+1 = (1− δK)τtime−stepKt + τtime−stepIt (53)

With δK the annual depreciation rate of capital, τtime−step the time step used (5 years in the
DICE model) and It the investment (in trillion of 2010$ per year).

A.2.2 Consume, invest, or mitigate ? Beware of the damage function !

The social-planner can perform three different action : to consume a part of the net output, to
invest a part of the net output or to mitigate the fossil-fuel emissions. The net out put is given
by :

Qt = (1− Λt −Ωt)Yt (54)

Where Λt is the cost of mitigation and Ωt are the damages from global climate change. Damages
are given as follows :

Ωt = Ψ1Tsurface + Ψ2T
2
surface (55)
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With Tsurface the Global Mean Surface Temperature anomalyin K. Mitigation cost are :

Λt = Pbackstop,t
σt

θ2 × 1000
µθ2t (56)

With Pbackstop the price of the backstop-technology in 2010$ per tCO2, σt the energy efficiency in
kgCO2 per 2010$ of output, θ2 a convexity parameter. The 1000 parameter is there to convert
the kgCO2 in tCO2. The net output might be invested :

It = stQt (57)

Or consumed :
Ct = Qt − It = (1− st)Qt (58)

Therefore, the social planner has two degress of liberty : s the saving rate and µ the mitigation
rate. On the one hand, mitigation has a cost, but on the other hand it avoids CO2 emissions
that would impact the economy through the global warming.

A.2.3 CO2 emissions in the DICE model

Thus, it is really important to know the functional form of the fossil-fuels emissions :

Eind,t = σtYt(1− µt) (59)

The result is given in GtCO2 per year. This functional form allows CO2 negative emissions
if µt > 1. This is not considered as impossible, however, µ is constrained by the maximum
mitigation rate so that it does not get too important : 0 ≤ µt ≤ µmax,t.

A.3 The physical module

The physical module model the response in term of Global Mean Surface Temperature anomaly
to fossil-fuel emissions.

A.3.1 The carbon cycle

First, the model determine the CO2 concentration in the atmosphere, through the carbon cycle
: MAT

MUP

MLM


t+1

=

1− φ12 φ21 0
φ12 1− φ21 − φ23 φ32

0 φ23 1− φ32

MAT

MUP

MLM


t

+

(Eind + Eland)
τtime−step

3.666

0
0


t

(60)

With MAT , MUP , and MLO representing carbon in the atmosphere, carbon in a quickly mixing
reservoir in the upper oceans and the biosphere, and carbon in the deep oceans (in GtC).
12
44

= 1
3.666

is the conversion factor from GtCO2 to GtC. Moreover φ21 =
MAT,eq

MUP,eq
φ12 and φ32 =

MUP,eq

MLO,eq
φ23 so that :MAT,eq

MUP,eq

MLM,eq

 =

1− φ12 φ21 0
φ12 1− φ21 − φ23 φ32

0 φ23 1− φ32

MAT

MUP

MLM

MAT,eq

MUP,eq

MLM,eq

 (61)

With MAT,eq, MUP,eq, and MLO,eq the equilibrium quantities of carbon in each pool.
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A.3.2 The climate response

From the quantity of carbon in the atmosphere, it is possible to derive the Effective Radiative
Forcing:

Ft = η log

(
MAT,t

MAT,1750

)
+ Fex,t (62)

With Fex,t the exogenous non-CO2 forcing. The Global Mean Surface Temperature and the
deep ocean temperature are given by :

TAT,t+1 = TAT,t + ξ1(Ft+1 − ξ2TAT,t − ξ3(TAT,t − TLO,t)) (63)

TLO,t+1 = TLO,t + ξ4(TAT,t − TLO,t) (64)

A.4 Computation of the SCC

With the DICE model, it is possible to compute the SCC the following way :

SCCt = −
∂W
∂Et |optimum
∂W
∂Ct |optimum

=
λEt
λCt

(65)

Where λEt and λCt are the Lagrange multipliers relative to the total emissions and to the
consumption.

A.5 The carbon tax in the DICE model

In the DICE model, Nordhaus also presents what he calls the carbon price and that present the
price that should be given to the carbon, so that the firms endogenize the need of mitigation.
To understand this, let us consider a decentralized equilibrium, with a representative firm and
a central state. The firm produces outputs and as well as CO2. The firm can reduce its cost,
but has to pay for it. The central state collects a tax proportional to the CO2 emitted, with a
price PCO2 in 2010$ per tCO2. The problem of the firm is thus, at time t :

max
µ
Y − cost(µ)− PCO2Eind(µ) (66)

i.e.
max
µ
Y − Y Pbackstopσ

θ2 × 1000
µθ2 − PCO2

1000
σY (1− µ) (67)

The first order condition finally gives us :

PCO2 = Pbackstopµ
theta2−1 (68)

The price of carbon depends on the mitigation rate, thus, a central state should, provided, the
implementation of the tax, manage the mitigation rate of firms39

39Obviously, the model considered here is very simplistc and do not represent the reality of policy design.
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B From Impulse Response Function (IRF) to box-models
The response function R of an input-output system, such as the carbon cycle, is the output of
the system when the input is a dirac impulse (i.e. for the carbon cycle the proportion of carbon
remaining in the atmosphere at a time t after an input at time 0). Then, for the carbon cycle
the quantity of carbon C in the system is the convolution of the response function and the flux
of emissions :

C(t)− C(0) =
∫ t

0

E(t− t′)R(t′)dt′ (69)

If it is possible to approximate R as a sum of exponential function40 :

R(t) ≈
∑
i

αi exp

(
− t

τi

)
(70)

With
∑

i αi = 1, since. R(0+) = 1, the system is equivalent to the box-model :

C(t) =
∑
i

Ci(t) (71)

Where the Ci are solution of :
dCi
dt

= −Ci
τi

+ αiE(t) (72)

These equations are really easy and fast to compute, so this method provide computing-efficient
approximation of a model that might be very complex.

40The αi are a discrete approximation of the inverse of the Laplace transformation, since this equation is an
approximation of R(t) =

∫ +∞
0

α(p)exp(−pt)dp
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C Supplementary figures for part 2.4

Figure 27: Mitigation rate over the period 2015-2515

Figure 28: CO2 fossil-fuel emissions over the period 2015-2515
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Figure 29: Carbon cycle emissions and sinks during a simulation of the DICE-ERM model

Figure 30: Saving rates over the period 2015-2515
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Figure 31: Damages from GMST anomaly expressed as a percentage of the GDP

Figure 32: Social Cost of Carbon over the period 2015-2150
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D Supplementary figures for part 3

Figure 33: Land sink comparison between the samples drawn after the calibration and the
Global Carbon Budget data [Le Quéré et al., 2018] since 1959

Figure 34: Ocean sink comparison between the samples drawn after the calibration and the
Global Carbon Budget data [Le Quéré et al., 2018] since 1959
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Figure 35: GMST and Social Cost of Carbon of the DICE-ERMmodel whith a 2.5◦ temperature
constraint
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E Supplementary figures for part 4 :SSP1 and SSP3

E.1 Drivers

Figure 36: Drivers for the SSP1 compared to the DICE model drivers

Figure 37: Drivers for the SSP3 compared to the DICE model drivers
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E.2 Fossil-fuels emissions

Figure 38: Fossil-fuel CO2 emissions of the DICE-ERM model on SSP1 compared to the SSP
data

Figure 39: Fossil-fuel CO2 emissions of the DICE-ERM model on SSP3 compared to the SSP
data
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E.3 Effective Radiative Forcing

Figure 40: ERF of the DICE-ERM model on SSP1 scenarios compared to the SSP data

Figure 41: ERF of the DICE-ERM model on SSP2 scenarios compared to the SSP data
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Figure 42: ERF of the DICE-ERM model on SSP3 scenarios compared to the SSP data

E.4 Global Mean Surface Temperature

Figure 43: GMST anomaly of the DICE-ERM model on SSP1 scenarios compared to the SSP
data
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Figure 44: GMST anomaly of the DICE-ERM model on SSP3 scenarios compared to the SSP
data

E.5 Gross Domestic Product

Figure 45: GDP of the DICE-ERM model on SSP1 scenarios compared to the SSP data
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Figure 46: GDP of the DICE-ERM model on SSP3 scenarios compared to the SSP data

E.6 Social Cost of Carbon

Figure 47: Social Cost of Carbon for the SSP1
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Figure 48: Social Cost of Carbon for the SSP3

E.7 Carbon price

Figure 49: Carbon price for the SSP1
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Figure 50: Carbon price for the SSP2

Figure 51: Carbon price for the SSP3
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Glossary
anomaly The Global Mean Surface Temperature anomaly is the difference between the current

GMST and the GMST of the preindustrial area, which is usually - in particular in this
study - defined as the average GMST over the period 1850 - 1900. 7, 10, 13, 15, 16, 18,
21–24, 26, 27, 42, 45, 48, 53, 59, 60, 65, 66

carbon sink A carbon sink is a natural reservoir that stores carbon in certain chemical states
(within carbon-containing compounds, such as, for instance organic compounds for the
biosphere, or carbonates for the ocean). Carbon sinks are key elements of the carbon
cycle, their description in the ERM climate model is made in Part 2.3.1 on page 11. 9,
14

Computational Infrastructure for Operations Research COIN-OR is a project that aims
at "building an open-source community for operations research software in order to speed
development and deployment of models, algorithms, and cutting-edge computational re-
search, as well as provide a forum for peer review of software similar to that provided
by archival journals for theoretical research". The IPOPT solver is a COIN-OR solver,
available in the GEKKO Python package. 68

Coupled Model Intercomparison Project It is a collaborative scheme designed to improve
knowledge of climate change, by comparing several GCMs outputs on common simulations
(historical control runs, 1% per year increasing-CO2, doubling and quadrupling of the
Preindustrial equilibrium CO2 concentration...). There has been several CMIP phases
since 1995, CMIP5 is currently the latest phase of the project and serves as reference
data in the field of climate science. Moreover, the CMIP6 outputs should be soonly
released. 68

Dynamic Coupled Climate Economy Developed since 1992 byWilliam Nordhaus, the DICE
model is one of the first IAMs that couples economy and climate. Still one of the most
important model in the field of climate economics, it famous for deriving the Social Cost
of Carbon (SCC). A full description of the DICE model is available in the Annex A page
46 or in [Nordhaus, 2013]. 68

Effective Radiative Forcing It correspond to the Radiative Forcing in addition to which we
have taken into account the rapid adjustments. 3, 10, 19–21, 23, 25, 26, 32, 37, 39–41,
44–47, 49, 58, 68

Equilibrium Climate Sensivity It refers to the variation of the GMST due to a variation
of the CO2 concentration in the Preindustrial equilibrium. It is often defined as the
variation of GMST due to a doubling of the Preindustrial equilibrium CO2 concentration.
However, in this study, we will consider the quadrupling of the Preindustrial equilibrium
CO2 concentration, as it is done in [Geoffroy et al., 2013a] and [?]. An important thing
to notice is that in most IAMs, the ECS is a specified parameter, whereas in GCMs, it is
an emergent property that arises from the simulation. 6, 9, 20, 68

GEKKO It is a Python package for machine learning and optimization of mixed-integer and
differential algebraic equations. It is coupled with large-scale solvers for linear, quadratic,
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nonlinear, and mixed integer programming. [Beal et al., 2018] [Beal and Hedengren, 2018]
[Beal and Hedengren, 2019]. 23, 64

General Algebraic Modeling System The General Algebraic Modeling System (GAMS)
is a high-level modeling system for mathematical optimization. GAMS is designed for
modeling and solving linear, nonlinear, and mixed-integer optimization problems. GAMS
is connected to a group of third-party optimization solvers, which includes the COIN-OR
solvers.. 46, 68

General Circulation Model or Global Climate Model GCMs are complex climate mod-
els that integrate the Navier-Stokes equations (along with thermodynamic terms and
sometimes athmospheric chemistry) on the Earth surface with a relevant spatial grid and
temporal scale, in order to simulate the atmosphere and oceans. Taking gas concentration
as an input they are used to forecast climate change. 68

Global Mean Surface Temperature It is the annual average temperature of the surface of
Earth (which includes both the land surface and the ocean surface). It is computed thanks
to several observations with a methodology detailed in [J. Hansen, R. Ruedy, M. Sato and Lo1, 2010].
For information about the Global Mean Surface Temperature anomaly see anomaly in the
glossary. 3–5, 10, 15, 19–23, 41, 45, 47–49, 59, 64, 66, 68

global warming hiatus It is is a period of relatively little change in globally averaged surface
temperatures. Due to a very warm El Nino between 1997 and 1998, the increase of GMST
appears very slight. This global warming hiatus raised and now explain many controversial
debates about the reality of anthropogenic global warming. 24

heterotrophic respiration Heterotrophic respiration refers to the carbon lost by organisms
in ecosystems other than the plants, the primary producers,themselves. It constitutes the
respiration by animals that live above-ground. 13, 18

Impulse Response Function see Annex B page 50. 3, 8, 15, 50, 68

Intergovernmental Panel on Climate Change It is an intergovernmental body of the United
Nations. Its goal is to provide the world an objective, scientific view of climate change, its
natural, political and economic impacts and risks, and possible mitigation and adaptation
response options. 68

Interior Point OPTimizer It is an open source software package for large-scale nonlinear
optimization. Its main properties are presented in [Wächter and Lorenz, 2006]. 68

land-use change Land use change is a process by which human activities transform the nat-
ural landscape, referring to how land has been used, usually emphasizing the functional
role of land for economic activities. Land use, land-use change, and forestry (LULUCF),
also referred to as Forestry and other land use (FOLU), is defined by the United Nations
Climate Change Secretariat as a "greenhouse gas inventory sector that covers emissions
and removals of greenhouse gases resulting from direct human-induced land use such as
settlements and commercial uses, land-use change, and forestry activities". 9, 10, 12, 19,
23, 37, 39, 47
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Monte Carlo Monte Carlo methods, or Monte Carlo experiments, are a broad class of com-
putational algorithms that rely on repeated random sampling to obtain numerical results.
The underlying concept is to use randomness to solve problems that might be determin-
istic in principle. 1, 2, 31, 35

Net Primary Productivity It is the rate of production of biomass with the photosynthesis
(Gross Primary Production) minus the respiration of the photosynthesizers. It is a flux
expressed in units of mass per unit time. 13, 68

ocean heat content It refers to the heat absorbed by the ocean which is then stored as
enthalpy. The ocean heat content at time t is often represented as its value at time t
minus the average value over the period 1955-2006 [Levitus et al., 2012]. We follow the
same convention in this study.. 9, 10, 21–23

permafrost In geoscience, it is ground (including rock or soil) whose mean annual temperature
temperature is below -2◦C. Most of this area is located in high latitudes in Siberia, north-
ern Canada, Alaska and Greenland. The thawing of permafrost is a key issue regarding
climate change, as it would release a rather uncertain but potentially huge amount of
greenhouse gas such as CO2 or CH4 in the atmosphere.. 10, 15, 16, 18, 19

Preindustrial equilibrium It is an hypothesis often made in the field of climate science that
the climate system is at an equilibrium (in the physical sense of the term) before the
industrial revolutions (i.e. that the sum of all carbon flux is zero). This implies that
the CO2 concentration is constant and the CO2-radiative forcing is zero as well. It is
compared to this period that the Global Mean Surface Temperature anomaly is defined.
8, 14, 17, 64

Radiative Forcing Radiative forcing is the net change in the energy balance of the Earth
system due to some imposed perturbation. It is usually expressed in watts per square
meter averaged over a particular period of time and quantifies the energy imbalance that
occurs when the imposed change takes place [IPCC, 2014a]. 9, 10, 19, 20, 64

Representative Concentration Pathway It is a greenhouse gas concentration (not emis-
sions) trajectory. There are four pathways selected for climate modeling, which describe
different climate futures. They are all considered possible depending on how much green-
house gases are emitted in the years to come. The four RCPs, namely RCP2.6, RCP4.5,
RCP6, and RCP8.5, are labelled after the reached in the year 2100 (2.6, 4.5, 6.0, and 8.5
W.m2, respectively). 37, 69

Total Factor of Productivity In classical economic growth model, the Total Factor of Pro-
ductivity is a multiplicative factor obtained by dividing an aggregate output such as the
GDP by its weighted factors of production (that are usually capital and labor). Often
considered as the primary contributor of the economic growth, it is interpreted as the the
efficiency of the workers as well as the level of technology. The GDP is often represented
with a Cobb-Douglas equation, A representing the TFP, K, the capital, L the labor and
0 < γ < 1 is the elasticity of GDP with respect to capital:

Yt = AtK
γ
t L

1−γ
t

. 7, 37, 38, 47, 69
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Total Fertility Rate In a given population, it is the average number of children that would
be born from a woman, provided that she survive until the end of her reproductive life
and she was to experience the exact current age-specific fertility rates (ASFRs) through
her lifetime. 38, 69
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Acronyms
AR1 Autoregressive model of order 1. 33

CMIP Coupled Model Intercomparison Project. 9, 26, 64

COIN-OR Computational Infrastructure for Operations Research. 65

DICE Dynamic Coupled Climate Economy. 1, 2, 4–9, 20–26, 28–30, 32, 34–42, 45–49, 52,
55–61

ECS Equilibrium Climate Sensivity. 9, 20, 21, 64

ERF Effective Radiative Forcing. 3, 20, 21, 23, 25, 26, 32, 34, 37, 39–41, 44–47, 49, 58, 59

ERM Earth Risk Management. 2, 8–10, 12, 15–17, 20, 21, 23, 26, 28, 29, 31, 32, 34, 35, 37,
39–42, 52, 55, 57–61, 64

FUND The Climate Framework for Uncertainty, Negotiation and Distribution. 5, 6

GAMS General Algebraic Modeling System. 23, 46

GCM General Circulation Model or Global Climate Model. 9, 20, 64, 65

GDP Gross Domestic Product. 3, 24, 27, 37–39, 42, 43, 46, 53, 60, 61, 66

GMST Global Mean Surface Temperature. 3–5, 7, 9–11, 13, 15–27, 32, 34, 35, 41, 42, 45,
47–49, 53, 55, 59, 60, 64, 65

IAM Integrated Assessment Model. 1, 2, 4–8, 46, 64

IIASA International Institute for Applied Systems Analysis. 37

IPCC Intergovernmental Panel on Climate Change. 8

IPOPT Interior Point OPTimizer. 23, 64

IRF Impulse Response Function. 3, 8, 9, 15, 50

MCMC Markov Chain Monte Carlo. 31

NPP Net Primary Productivity. 12, 13

OECD Organisation for Economic Cooperation and Development. 37

OLG Ordinary Least Square. 34, 39

OSCAR Occupation des Sols et cycle du CARbone. 11, 14

PAGE Policy Analysis of the Greenhouse Effect. 5, 6

PEM Policy Evaluation Model. 5, 6, 45
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PIK Potsdam-Institut für Klimafolgenforschung. 37

POM Policy Optimization Model. 5–7, 45

ppm part per million. 13–15

RCP Representative Concentration Pathway. 37, 39–41, 43, 44

SCC Social Cost of Carbon. 1–7, 29, 30, 34–37, 43–46, 49, 53, 55, 61, 62, 64

SPA Shared climate Policy Assumptions. 36

SSP Shared Socioeconomic Pathway. 1–3, 32, 36–45, 56–63

TFP Total Factor of Productivity. 7, 23, 28, 37–39, 43, 46, 47

TFR Total Fertility Rate. 38
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